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1. Introduction

Projection-cost preservation is a low-rank approximation guarantee which ensures 
that the cost of any rank-k projection can be preserved using a smaller sketch of the 
original data matrix. It has recently emerged as a fundamental principle in the design and 
analysis of sketching-based algorithms for common matrix operations that are critical in 
data mining and machine learning.

Prior to introducing the formal definition for cost-preserving projections, we state the 
general constrained low-rank approximation problem. For any matrix A ∈ Rn×d and 
a set Ω of orthogonal projection matrices P ∈ Rd×d with rank(P) = k, we seek the 
minimizer of the following optimization problem:

P∗ = argmin
P∈Ω

‖A − AP‖2
F . (1)

Here, the term ‖A −AP‖2
F is called the cost of projection P; recall that ‖X‖2

F =
∑

i,j X2
ij . 

Two simple examples will help clarify the importance of the above formulation. First, 
let Ω be the set of all rank-k orthogonal projection matrices: in this case, the problem 
of eqn. (1) is equivalent to finding the best rank-k approximation to A, which can be 
computed via the Singular Value Decomposition (SVD) in polynomial time. Second, let 
A be a data matrix whose columns represent d points in Rn and let Ω be the set of 
all orthogonal rank-k projection matrices of the form P = XXT. If we let X ∈ Rd×k

denote the rescaled cluster-membership matrix, i.e., Xij = 1/√sj if the i-th column of 
A belongs to the j-th cluster and zero otherwise (sj is the size of the j-th cluster),2
then the constrained low-rank approximation problem of eqn. (1) is equivalent to the 
well-known k-means clustering problem [10].

The above discussion shows that, depending on the set Ω, the optimization problem 
of eqn. (1) can be easy or very hard to solve exactly. Indeed, the low-rank approximation 
problem can be solved in polynomial time via the SVD, whereas the k-means clustering 
problem is NP-hard [3] and a polynomial time algorithm is unlikely. The projection-cost 
preservation formulation of the optimization problem in eqn. (1) replaces the full matrix 
A by a smaller sketch Ã ∈ Rs×d, with s � n, in order to reduce the solution cost. 
The following definition first appeared in [8,23]; see Section 1.1 for a discussion of prior 
work.3

Definition 1. Let A ∈ Rn×d be the input matrix and let W ∈ Rs×n with s � n be 
a sketching matrix. The matrix WA is a rank-k projection-cost preserving sketch of A
with error ε ∈ [0, 1] if it satisfies

2 Note that every row of X has exactly one non-zero element and its columns are pairwise orthogonal and 
normal.
3 The original definitions of [8,23] included a non-negative, fixed constant c as an additive term, which 

does not add any generality in our setting.
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(1 − ε)‖A − AP‖2
F ≤ ‖WA − WAP‖2

F ≤ (1 + ε)‖A − AP‖2
F , (2)

for all rank-k projection matrices P ∈ Rd×d (1 ≤ k < d).

In words, the so-called projection-cost preserving sketch WA can replace the original 
matrix A in the optimization problem of eqn. (1) with a small loss in accuracy (see 
Lemma 3 of [8]) and thus one can solve the sketched problem instead of the original 
problem. We will now slightly manipulate Definition 1 by rewriting the rank-k projection 
matrix P ∈ Rd×d as follows: let X ∈ Rd×(d−k) be a matrix whose columns form a basis 
for the subspace that is orthogonal to the subspace spanned by P. Thus, P = Id −XXT

and XTX = Id−k (I is a square identity matrix of appropriate dimensions). We can now 
rewrite the exact and approximate cost of the projection P as follows:

‖A − AP‖2
F = ‖AXXT‖2

F = ‖AX‖2
F , and

‖WA − WAP‖2
F = ‖WAXXT‖2

F = ‖WAX‖2
F .

The final equalities in both derivations follow from the unitary invariance of the Frobenius 
norm. We can now state our (equivalent) definition of cost-preserving projections.

Definition 2 (Cost-preserving projections). Let A ∈ Rn×d be the input matrix and let 
W ∈ Rs×n with s � n be a sketching matrix. Then, WA is a rank-k projection-cost 
preserving sketch of A ∈ Rn×d with error ε ∈ [0, 1] if it satisfies∣∣‖WAX‖2

F − ‖AX‖2
F

∣∣ ≤ ε ‖AX‖2
F , (3)

for all matrices X ∈ Rd×(d−k) such that XTX = Id−k (1 ≤ k < d).

Building upon the above definition, our main contribution is a general, structural re-
sult (Theorem 2) presenting four sufficient conditions that a sketching matrix W should 
satisfy in order to guarantee that the sketched matrix WA is a cost-preserving projection. 
The proposed sufficient conditions all boil down to sketching-based matrix multiplication 
(see Section 4.1 for a review), a fundamental and well-studied primitive of Randomized 
Linear Algebra (RLA). Such structural results have been of paramount importance in the 
RLA community, as they typically decouple the linear-algebraic component of a problem 
from the randomized algorithms that are employed to satisfy the structural conditions. 
See [19,15,13] for similar structural results for a variety of linear algebraic problems for 
which randomized algorithms have been designed, including �2 regression, SVD approxi-
mation, the Column Subset Selection Problem, etc. In Section 4, we instantiate our main 
result (Theorem 2) to show how different constructions of the sketching matrix W satisfy 
the structural conditions of our theorem. We hope that this linear-algebraic exposition 
of the cost-preserving projection problem will help bring it to the forefront of the linear 
algebra community and stimulate further research on this fundamental problem.
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1.1. Related work

The importance of cost-preserving projections was first recognized by [8,23], who 
coined the aforementioned term for the problem of Definition 2. Their work provided 
several ways to construct provably accurate projection-cost preserving sketches and also 
demonstrated their applicability to constrained low-rank approximation problems, such 
as k-means clustering. Their work recognized the importance of structural results for 
cost-preserving projections and actually presented a related structural theorem, which 
is considerably more involved and complicated than our Theorem 2. In a more recent 
paper [9], the authors showed that ridge leverage score sampling also satisfies the cost-
preserving projection guarantee. Interestingly, the results of [8,23] and [9] are quite 
independent and different from each other in terms of proof strategies, at least to the best 
of our understanding. A major motivation of our work was the unification of these two 
seemingly different approaches for cost-preserving projections using the same structural 
result.

We do note that prior to [8,23], the idea of projection-cost preservation was also dis-
cussed in [16] (see their Definition 2) and it was also implicit in [10,5]. Cost-preserving 
projections have also been connected with the construction of coresets4 in machine learn-
ing, computational geometry, and theoretical computer science. We refer the interested 
reader to [4,16–18] for detailed discussions. In particular, [18] addressed the existence and 
efficient construction of coresets using a definition that is almost identical to Definition 2.

2. Notation

Given a matrix A ∈ Rn×d, let Ai∗ denote the i-th row of A as a row vector and 
let A∗i denote the i-th column of A as a column vector. Let the (thin) SVD of A be 
A = Un×rΣr×rVT

d×r; subscripts denote matrix dimensions and r denotes the rank of the 
matrix A. It is well-known that UTU = VTV = Ir and Σ = diag{σ1, . . . , σr} consists 
of the non-zero singular values of A sorted in non-increasing order, σ1 ≥ · · · ≥ σr > 0. 
Let Am be the best rank-m approximation to A and let Am,⊥ = A − Am. We will use 
the slightly non-standard notation Σm � diag {σ1, . . . , σm, 0, . . . , 0} to denote the r × r

diagonal matrix whose top m entries are equal to the top m singular values of A and 
the bottom r−m entries are set to zero. Similarly, Σm,⊥ � diag {0, . . . , 0, σm+1, . . . , σr}
is the r × r diagonal matrix whose top m entries are set to zero and the bottom r −m

entries are set to the bottom r − m singular values of A. Clearly, Σ = Σm + Σm,⊥, 
Am = UΣmVT, and Am,⊥ = UΣm,⊥VT.

We will make frequent use of matrix norms, norm inequalities, and matrix trace 
properties; we refer the reader to Chapter 2 of [14] for a quick introduction. We do note 

4 In words, coresets are small sets of points that approximate the shape and properties of a larger set of 
points.
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the strong submultiplicativity property of the Frobenius norm, namely that for any two 
matrices A and B of suitable dimensions,

‖AB‖F ≤ min{‖A‖2 · ‖B‖F , ‖A‖F · ‖B‖2}.

An important tool in our analysis will be von Neumann’s trace inequality; recall that the 
trace of a square matrix A, denoted tr(A), is the sum of its diagonal entries.

Proposition 1 (Von Neumann’s trace inequality [22]). For any matrices A, B ∈ Rn×n

with singular values σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) and σ1(B) ≥ σ2(B) ≥ · · · ≥ σn(B)
respectively,

| tr(AB)| ≤
n∑

i=1
σi(A)σi(B) .

In Section 4, we will make frequent use of a fundamental result from probability theory, 
known as Markov’s inequality. Let X be a random variable assuming non-negative values 
with expectation E[X]. Then, for any t > 0,

P (X ≥ t · E[X]) ≤ 1
t
.

We will also need the so-called union bound: given a set of random events E1, E2, . . . , En
holding with respective probabilities p1, p2, . . . , pn, the probability that at least one of 
these events holds (i.e., the probability of the union of these events) is upper-bounded 
by 
∑n

i=1 pi.

3. Our structural result

We now describe our main structural result for cost-preserving projections (see Defini-
tion 2). Our structural result connects cost-preserving projections with sketching-based 
matrix multiplication, a well-studied primitive in the Randomized Linear Algebra com-
munity.

Prior to presenting our result we define the diagonal matrix Σ̃ ∈ Rr×r as

Σ̃ = diag{d1, d2, . . . , dm, . . . , dq, 0, . . . , 0}, (4)

with d1 ≥ d2 ≥ . . . ≥ dm ≥ . . . ≥ dq > 0. As we will discuss in more detail below, 
q and m are positive integers between one and r that are selected by the user of our 
structural result in order to satisfy the four conditions of Theorem 2; the same is true for 
the values di, i = 1, . . . , q. It is precisely this flexibility in the construction of the matrix 
Σ̃ that makes Theorem 2 able to accommodate different constructions of the sketching 
matrix W.
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Theorem 2. Let A ∈ Rn×d be the input matrix and let X ∈ Rd×(d−k) be any matrix 
satisfying XTX = I, with 1 ≤ k < d. Let the thin SVD of A be A = UΣVT; recall the 
definition of Σ̃ from eqn. (4), and assume that the sketching matrix W ∈ Rs×n satisfies 
the following four conditions for some accuracy parameter ε:∥∥∥Σ̃UTWTWUΣ̃− Σ̃

2∥∥∥
2
≤ ε, (5)∥∥∥Σ̃UTWTWAm,⊥ − Σ̃UTAm,⊥

∥∥∥
F
≤ ε ‖AX‖F , (6)∥∥AT

m,⊥WTWAm,⊥ − AT
m,⊥Am,⊥

∥∥
F
≤ ε√

k
‖AX‖2

F , and (7)∣∣‖WAm,⊥‖2
F − ‖Am,⊥‖2

F

∣∣ ≤ ε ‖AX‖2
F . (8)

Then,

∣∣‖WAX‖2
F − ‖AX‖2

F

∣∣ ≤ (d−2
m + 2 d−1

m + 2
)
ε ‖AX‖2

F . (9)

Several comments are necessary to better understand the above structural result. First 
of all, the four conditions of Theorem 2 need to be satisfied for a user-specified matrix Σ̃. 
To be precise, the user of the structural result has the flexibility to choose q (the number 
of non-zero diagonal entries of Σ̃) as well as the values of its entries di, i = 1, . . . , q, 
subject to the constraint that the entries are decreasing and strictly positive. Second, the 
user of the structural result has the flexibility to choose the parameter m (which ranges 
between one and q) that appears in the last three conditions of Theorem 2. In particular, 
m is used to define the optimal rank-m approximation Am to the input matrix A (see 
Section 2 for notation) and the (perpendicular) matrix Am,⊥ which satisfies A = Am +
Am,⊥ and AT

mAm,⊥ = 0. We emphasize that the conditions of Theorem 2 only need 
to hold for a single user-specified choice of m without affecting the generality of the 
theorem’s conclusion. Third, all four conditions of Theorem 2 boil down to sketching-
based matrix multiplication, as described in Section 4.1. Fourth, the final error bound 
depends on the accuracy parameter ε as well as the (user-specified) value dm. As we will 
see in two different constructions of the sketching matrix W in Section 4, dm is a small 
constant and thus the term in parentheses in the right-hand side of eqn. (9) can be easily 
replaced by a constant. Fifth, we note that the third constraint is a bit tighter (by a 
factor of 1/√k) compared to the other ones. This turns out not to be a problem for known 
constructions of W since the product AT

m,⊥Am,⊥ is easy to approximate by sketching. 
Sixth, more general versions of our structural result are possible: for example, one could 
remove the assumption that the entries of the diagonal matrix Σ̃ are decreasing. A more 
general result could be derived for the general case di �= 0 for all i = 1, . . . , q. We 
are not aware of a construction of the sketching matrix W that would necessitate this 
more general setting and, therefore, we refrain from introducing additional complexity 
to Theorem 2.
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Proof. Throughout the proof, we will make heavy use of the notation in Section 2. We 
also introduce an additional piece of notation, namely the diagonal matrix Σ̃⊥ ∈ Rr×r, 
which is defined as

Σ̃⊥ = diag{0, . . . , 0︸ ︷︷ ︸
q

, 1, . . . , 1︸ ︷︷ ︸
r−q

}. (10)

We note that the inverse of Σ̃ + Σ̃⊥ always exists, since it is a diagonal matrix with 
non-zero entries. For notational convenience, let Z � UT(In−WTW)U and Y � VTX. 
Using properties of the matrix trace and the SVD of A, we can rewrite the quantity that 
we seek to bound in Theorem 2 as∣∣‖AX‖2

F − ‖WAX‖2
F

∣∣ = ∣∣tr (XTAT (In − WTW
)
AX
)∣∣

=
∣∣tr (XTVΣUT (In − WTW

)
UΣVTX

)∣∣
=
∣∣tr (YTΣZΣY

)∣∣
=
∣∣tr (YT(Σm + Σm,⊥)Z (Σm + Σm,⊥)Y

)∣∣
≤
∣∣tr (YTΣmZΣmY

)∣∣︸ ︷︷ ︸
Δ1

+
∣∣tr (YTΣm,⊥ZΣm,⊥Y

)∣∣︸ ︷︷ ︸
Δ2

+ 2
∣∣tr (YTΣmZΣm,⊥Y

)∣∣︸ ︷︷ ︸
Δ3

. (11)

In the above derivations, we also used the fact that Σ = Σm + Σm,⊥ (see Section 2).

Bounding Δ1. We start by bounding the first term in eqn. (11):

Δ1 =
∣∣tr (YTΣmZΣmY

)∣∣
=
∣∣∣tr(YTΣm

(
Σ̃ + Σ̃⊥

)−1 (Σ̃ + Σ̃⊥
)
Z
(
Σ̃ + Σ̃⊥

) (
Σ̃ + Σ̃⊥

)−1ΣmY
)∣∣∣

=
∣∣∣tr(YT(Σ̃ + Σ̃⊥

)−1 Σm

(
Σ̃ + Σ̃⊥

)
Z
(
Σ̃ + Σ̃⊥

)
Σm

(
Σ̃ + Σ̃⊥

)−1Y
)∣∣∣

=
∣∣∣tr(YT(Σ̃ + Σ̃⊥

)−1 Σm Σ̃Z Σ̃Σm

(
Σ̃ + Σ̃⊥

)−1Y
)∣∣∣

=
∣∣∣tr(YT Σm

(
Σ̃ + Σ̃⊥

)−1 Σ̃Z Σ̃
(
Σ̃ + Σ̃⊥

)−1Σm Y
)∣∣∣

=
∣∣∣tr(YTΣm

(
Σ̃ + Σ̃⊥

)−1 E1
(
Σ̃ + Σ̃⊥

)−1ΣmY
)∣∣∣

=
∣∣∣∣tr(E1

((
Σ̃ + Σ̃⊥

)−1ΣmY
)((

Σ̃ + Σ̃⊥
)−1ΣmY

)T
)∣∣∣∣ . (12)

In the above, we set E1 = Σ̃ZΣ̃ = Σ̃UT WTWUΣ̃− Σ̃
2
. Further, we used the fact that 

Σm

(
Σ̃ + Σ̃⊥

)
= Σm Σ̃, which follows from Σm Σ̃⊥ = 0 (recall that m ≤ q). The last 

equality follows from the invariance of matrix trace under cyclic permutations.
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Next, we apply von Neumann’s trace inequality and the condition of eqn. (5) on the 
right hand side of eqn. (12) to get

Δ1 ≤
m∑
i=1

σi(E1) · σ2
i

((
Σ̃ + Σ̃⊥

)−1ΣmY
)

≤ ε
m∑
i=1

σ2
i

((
Σ̃ + Σ̃⊥

)−1ΣmY
)
≤ ε
∥∥∥(Σ̃ + Σ̃⊥

)−1ΣmY
∥∥∥2
F
.

Notice that 
(
Σ̃+ Σ̃⊥

)−1Σm = (Σ̃+ Σ̃⊥)−1
m Σm, where (Σ̃+ Σ̃⊥)−1

m ∈ Rr×r is a diagonal 
matrix whose top m diagonal entries are equal to those of 

(
Σ̃+Σ̃⊥

)−1 and the remaining 
r −m diagonal entries are set to zero. Then,∥∥∥(Σ̃ + Σ̃⊥

)−1ΣmY
∥∥∥2
F

=
∥∥∥(Σ̃ + Σ̃⊥)−1

m ΣmY
∥∥∥2
F

≤
∥∥∥(Σ̃ + Σ̃⊥)−1

m

∥∥∥2
2
· ‖ΣmY‖2

F ≤ d−2
m ‖AmX‖2

F . (13)

The last inequality follows from 
∥∥∥(Σ̃ + Σ̃⊥)−1

m

∥∥∥
2

= d−1
m and the fact that (see Section 2)

‖ΣmY‖2
F =
∥∥UΣmVTX

∥∥2
F

= ‖AmX‖2
F .

Therefore, we have shown that

Δ1 ≤ d−2
m ε ‖AmX‖2

F ≤ d−2
m ε ‖AX‖2

F , (14)

where the last inequality follows from ‖AX‖2
F = ‖AmX‖2

F + ‖Am,⊥X‖2
F (by the matrix 

Pythagorean theorem).

Bounding Δ2. We now manipulate the second term of eqn. (11). Let X⊥ ∈ Rd×k form a 
basis for the space that is orthogonal to the space spanned by the columns of X (thus, 
XXT + X⊥XT

⊥ = Id). Furthermore, recall that Y = VTX, Z = UT (In − WTW
)
U, 

and Am,⊥ = UΣm,⊥VT. Using the above definitions and properties of the matrix trace, 
we get

Δ2 =
∣∣tr (YTΣm,⊥ZΣm,⊥Y

)∣∣ = ∣∣tr (XTAT
m,⊥
(
In − WTW

)
Am,⊥X

)∣∣
=
∣∣tr (AT

m,⊥
(
In − WTW

)
Am,⊥XXT)∣∣

=
∣∣tr (AT

m,⊥
(
In − WTW

)
Am,⊥(Id − X⊥XT

⊥)
)∣∣

=
∣∣tr (AT

m,⊥
(
In − WTW

)
Am,⊥ − AT

m,⊥
(
In − WTW

)
Am,⊥X⊥XT

⊥
)∣∣

≤
∣∣tr (AT

m,⊥
(
In − WTW

)
Am,⊥

)∣∣︸ ︷︷ ︸
Δ21

+
∣∣tr (AT

m,⊥
(
In − WTW

)
Am,⊥X⊥XT

⊥
)∣∣︸ ︷︷ ︸

Δ22

.

(15)
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We now bound Δ21 and Δ22 separately. Using the structural condition of eqn. (8), we 
obtain

Δ21 =
∣∣tr (AT

m,⊥
(
In − WTW

)
Am,⊥

)∣∣ = ∣∣tr (AT
m,⊥Am,⊥ − AT

m,⊥WTWAm,⊥
)∣∣

=
∣∣‖Am,⊥‖2

F − ‖WAm,⊥‖2
F

∣∣ ≤ ε ‖AX‖2
F . (16)

In order to bound Δ22, we will apply von Neumann’s trace inequality, the Cauchy-
Schwarz inequality, and the structural condition of eqn. (7). For notational convenience, 
let E2 = AT

m,⊥
(
In − WTW

)
Am,⊥ and proceed as follows:

Δ22 =
∣∣tr (AT

m,⊥
(
In − WTW

)
Am,⊥X⊥XT

⊥
)∣∣ = ∣∣tr (E2X⊥XT

⊥
)∣∣

≤
k∑

i=1
σi(E2) · σi(X⊥XT

⊥) ≤
[

k∑
i=1

σ2
i (E2)

] 1
2

·
[

k∑
i=1

σ2
i (X⊥XT

⊥)
] 1

2

(17)

≤
√
k ‖E2‖F ≤ ε ‖AX‖2

F . (18)

It is important to note that the matrix X⊥ has rank k and thus has at most k non-
zero singular values (all equal to one), which explains the fact that the summation in 
eqn. (17) stops at k. The last two inequalities follow from 

∑k
i=1 σ

2
i (E2) ≤ ‖E2‖2

F and 
the structural condition of eqn. (7). Combining eqns. (15), (16), and (18), we obtain

Δ2 ≤ 2 ε ‖AX‖2
F . (19)

Bounding Δ3. Finally, we consider the third term of eqn. (11). Again, using Y = VTX, 
Z = UT (In − WTW

)
U, and Am,⊥ = UΣm,⊥VT, we get

Δ3 =
∣∣tr (YTΣmZΣm,⊥Y

)∣∣
=
∣∣tr (YTΣmUT (In − WTW

)
Am,⊥X

)∣∣
=
∣∣∣tr(YTΣm

(
Σ̃ + Σ̃⊥

)−1(Σ̃ + Σ̃⊥
)
UT (In − WTW

)
Am,⊥X

)∣∣∣
=
∣∣∣tr(YT(Σ̃ + Σ̃⊥

)−1Σm

(
Σ̃ + Σ̃⊥

)
UT (In − WTW

)
Am,⊥X

)∣∣∣
=
∣∣∣tr(YT(Σ̃ + Σ̃⊥

)−1ΣmΣ̃UT (In − WTW
)
Am,⊥X

)∣∣∣
=
∣∣∣tr(YTΣm

(
Σ̃ + Σ̃⊥

)−1Σ̃UT (In − WTW
)
Am,⊥X

)∣∣∣ . (20)

In the above, we repeatedly used the fact that matrix multiplication of diagonal matrices 
is commutative and ΣmΣ̃⊥ = 0. Next, we apply von Neumann’s trace inequality and 
the Cauchy-Schwarz inequality to eqn. (20) to get
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Δ3 ≤
m∑
i=1

σi

(
YTΣm

(
Σ̃ + Σ̃⊥

)−1
)
· σi

(
Σ̃UT(In − WTW)Am,⊥X

)

≤
[ m∑

i=1
σ2
i

(
YTΣm

(
Σ̃ + Σ̃⊥

)−1
)] 1

2

·
[ m∑

i=1
σ2
i

(
Σ̃UT(In − WTW)Am,⊥X

)] 1
2

= ‖YTΣm

(
Σ̃ + Σ̃⊥

)−1‖F · ‖Σ̃UT(In − WTW)Am,⊥X‖F

≤ ‖YTΣm

(
Σ̃ + Σ̃⊥

)−1‖F · ‖Σ̃UT(In − WTW)Am,⊥‖F . (21)

The last inequality follows from strong submultiplicativity and the fact that ‖X‖2 = 1. 
Note that in eqn. (13) we proved that ‖YTΣm

(
Σ̃+ Σ̃⊥

)−1‖F ≤ d−1
m ‖AmX‖F , while the 

structural condition of eqn. (6) gives

‖Σ̃UT(In − WTW)Am,⊥‖F = ‖Σ̃UTAm,⊥ − Σ̃UT WTWAm,⊥‖F ≤ ε‖AX‖F .

Thus, eqn. (21) can be bounded as

Δ3 ≤ d−1
m ‖AmX‖F · ε‖AX‖F ≤ d−1

m ε ‖AX‖2
F , (22)

where the last inequality follows from ‖AX‖2
F = ‖AmX‖2

F + ‖Am,⊥X‖2
F (by the matrix 

Pythagorean theorem).

Final bound. Combining eqns. (11), (14), (19), and (22) concludes the proof of 
eqn. (9). �
4. Satisfying the conditions of Theorem 2

In this section we show how to satisfy the conditions of Theorem 2 using various 
constructions for the sketching matrix W. Of particular interest is that our structural 
result of Theorem 2 unifies the sketching matrix constructions of [8] and [9].

4.1. Review of randomized matrix multiplication

We present a brief review of randomized matrix multiplication and some relevant 
theoretical results from prior work that will be useful in this section. Consider a simple 
algorithm (Algorithm 1) to construct a sampling-and-rescaling matrix W ∈ Rs×n. Using 
Algorithm 1 we can approximate the matrix product AB by AWTWB, where AWT is 
the sketch of A and WB is the sketch of B.

Lemma 3. Given matrices A ∈ Rm×n and B ∈ Rn×p, let W ∈ Rs×n be constructed 
using Algorithm 1. Then,

E
[
‖AWTWB − AB‖2

F

]
≤

n∑ ‖A∗i‖2
2 · ‖Bi∗‖2

2
spi

. (23)

i=1
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Algorithm 1 Construct sampling-and-rescaling matrix.
Input: Probabilities pk, k = 1, . . . , n; integer s � n;
Initialize: W ← 0s×n;
for i = 1 to s do

Pick ji ∈ {1, . . . , n} with P (ji = k) = pk;
Wiji

← (s pji
)−

1
2 ;

end for
Output: Sampling-and-rescaling matrix W;

Furthermore, if m = p,

E
[(

tr
(
AWTWB − AB

))2] ≤ n∑
i=1

[(BA)ii]2

spi
. (24)

Eqn. (23) was proven in [11] (see Lemma 3); the proof of eqn. (24) is a simple exercise 
using the setup of Lemma 3 in [11].

Lemma 4. Given matrices A ∈ Rm×n, B ∈ Rn×p and some constant β ∈ (0, 1], let 
W ∈ Rs×n be constructed using Algorithm 1 with

pi ≥ β
‖A∗i‖2

2

‖A‖2
F

, ∀i = 1, . . . , n

such that 
∑n

i=1 pi = 1. Then,

E
[
‖AWTWB − AB‖2

F

]
≤ 1

βs
‖A‖2

F · ‖B‖2
F . (25)

Furthermore, if m = p,

E
[(

tr
(
AWTWB − AB

))2] ≤ 1
βs

‖A‖2
F · ‖B‖2

F . (26)

The proof of the above lemma is immediate from Lemma 3 (with an application of the 
Cauchy-Schwartz inequality which implies that ((BA)ii)2 ≤ ‖A∗i‖2

2 · ‖Bi∗‖2
2). Finally, 

the next lemma appeared in [6] as Theorem 3 and is a strengthening of Theorem 4.2 of 
[20] for the special case when ‖A‖2 ≤ 1. We also note that Lemma 5 is implicit in [9].

Lemma 5. Given A ∈ Rm×n with ‖A‖2 ≤ 1, let W ∈ Rs×n be constructed using Al-
gorithm 1 with pi ≥ β ‖Ai∗‖2

2 / ‖A‖2
F for all i = 1, . . . , n and β ∈ (0, 1] such that ∑n

i=1 pi = 1. Let δ be a failure probability and ε > 0 be an accuracy parameter. If the 
number of sampled columns s satisfies

s ≥ 2
(
1 + ε

3

) ‖A‖2
F

β ε2 ln
(

4 (1 + ‖A‖2
F )

δ

)
,
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then, with probability at least 1 − δ,

∥∥AWTWA − AAT∥∥
2 ≤ ε.

4.2. Leverage score–based sampling

Our first approach constructs a sampling-and-rescaling matrix W using Algorithm 1
with sampling probabilities pi, i = 1, . . . , n:

pi � 1
2
‖(Uk)i∗‖2

2
k

+ 1
2
‖(Ak,⊥)i∗‖2

2
‖(Ak,⊥)‖2

F

. (27)

Clearly 
∑n

i=1 pi = 1. Recall that (Uk)i∗ denotes the i-th row of the matrix of the top k left 
singular vectors of A, while (Ak,⊥)i∗ denotes the i-th row of the matrix Ak,⊥ = A −Ak

(here Ak is the best rank-k approximation to A). It is well-known that the quantities 
‖(Uk)i∗‖2

2 for i = 1, . . . , n correspond to the so-called leverage scores of the best rank-k
approximation to A (see [12,21] for detailed discussions of the leverage scores and their 
properties). The sampling probabilities pi of eqn. (27) are a linear combination of the 
aforementioned leverage scores and a quantity that depends on the row norms of the 
residual matrix Ak,⊥. It is worth noting that, to the best of our knowledge, using only 
the leverage scores as the sampling probabilities to construct the sampling-and-rescaling 
matrix W would not suffice to satisfy all conditions of Theorem 2.

We are now ready to apply Theorem 2 in order to analyze the performance of the 
matrix W that is constructed using the above procedure. First, recall that, as users of 
Theorem 2, we have full control in the construction of the matrix Σ̃. Towards that end, 
let Σ̃ be constructed as

Σ̃ = diag{1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
r−k

}, (28)

where both m and q (two parameters associated with the matrix Σ̃) are set to be equal 
to k. Trivially, dm = 1 by the construction of Σ̃. Therefore the constant at the right-hand 
side of eqn. (9) is equal to five.

Satisfying the condition of eqn. (5) Using our definition for Σ̃, we rewrite the left hand 
side of the structural eqn. (5) as follows:

∥∥∥Σ̃UTWTWUΣ̃ − Σ̃
2∥∥∥

2
=
∥∥∥∥(Ik 0

0 0

)
UTWTWU

(
Ik 0
0 0

)
−
(

Ik 0
0 0

)∥∥∥∥
2

=
∥∥∥∥(UT

kWTWUk − Ik 0
0 0

)∥∥∥∥ =
∥∥UT

kWTWUk − Ik
∥∥

2 . (29)

2
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Notice that the sampling probabilities pi satisfy pi ≥ 1
2
‖(Uk)i∗‖2

2
k for i = 1, . . . , n. Thus, 

combining eqn. (29) and Lemma 5, we get

P
(
‖Σ̃UTWTWUΣ̃ − Σ̃

2‖2 ≥ ε
)
≤ δ

4 . (30)

For the above bound to hold, we need to set the number of sampled rows of A,

s ≥
(
1 + ε

3

) 4 k ln (16 (1+k)/δ)
ε2 .

Satisfying the condition of eqn. (6) We start by proving a simple inequality that will 
be useful in subsequent derivations (recall the definition of X⊥ from Section 3):

‖Ak,⊥‖F = ‖A − Ak‖2
F ≤ ‖A − AX⊥XT

⊥‖F = ‖AXXT‖F = ‖AX‖F . (31)

The inequality in the above derivation is due to the fact that Ak is the best rank-k
approximation to A. We now use the definition of Σ̃ to rewrite the condition as follows:∥∥∥Σ̃UTWTWAk,⊥ − Σ̃UTAk,⊥

∥∥∥
F

=
∥∥∥∥(Ik 0

0 0

)(
UT

k

UT
k,⊥

)
WTWAk,⊥ −

(
Ik 0
0 0

)(
UT

k

UT
k,⊥

)
Ak,⊥

∥∥∥∥
F

=
∥∥∥∥(UT

k
0

)
WTWAk,⊥ −

(
UT

k
0

)
Ak,⊥

∥∥∥∥
F

=

∥∥∥∥∥∥UT
kWTWAk,⊥ − UT

kAk,⊥︸ ︷︷ ︸
0

∥∥∥∥∥∥
F

. (32)

We emphasize that UT
kAk,⊥ = 0. Using the fact that pi ≥ 1

2
‖(Uk)i∗‖2

2
k and applying 

Lemma 4, we obtain

E
[
‖UT

kWTWAk,⊥‖2
F

]
≤ 2

s
‖Uk‖2

F · ‖Ak,⊥‖2
F = 2k

s
‖Ak,⊥‖2

F ≤ 2k
s
‖AX‖2

F ,

where we used the fact ‖Uk‖2
F = k, and the last inequality follows from eqn. (31). 

Applying Markov’s inequality, we get

P
(
‖AT

k,⊥WTWUk‖F ≥ ε ‖AX‖F
)
≤ δ

4 . (33)

The above bound holds if the number of sampled rows s ≥ 8k/δε2.

Satisfying the conditions of eqns. (7) and (8) We note that pi ≥ 1
2
‖(Ak,⊥)i∗‖2

2
‖(Ak,⊥)‖2

F
for i =

1, . . . , n. Applying Lemma 4 and using eqn. (31), we obtain
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E
[
‖AT

k,⊥WTWAk,⊥ − AT
k,⊥Ak,⊥‖2

F

]
≤ 2

s
‖Ak,⊥‖4

F ≤ 2
s
‖AX‖4

F ,

E
[(
‖WAk,⊥‖2

F − ‖Ak,⊥‖2
F

)2] ≤ 2
s
‖Ak,⊥‖4

F ≤ 2
s
‖AX‖4

F .

In the above derivations, we used the fact that

tr
(
AT

k,⊥WTWAk,⊥ − AT
k,⊥Ak,⊥

)
= ‖WAk,⊥‖2

F − ‖Ak,⊥‖2
F .

Next, by Markov’s inequality, we get

P

(∣∣‖WAk,⊥‖2
F − ‖Ak,⊥‖2

F

∣∣ ≥ ε√
k
‖AX‖2

F

)
≤ δ

4 , (34)

P

(
‖AT

k,⊥WTWAk,⊥ − AT
k,⊥Ak,⊥‖F ≥ ε√

k
‖AX‖2

F

)
≤ δ

4 . (35)

For the above bounds to hold, we need to set the number of sampled rows s ≥ 8k/δε2. It 
is worth noting that the bound of eqn. (34) is stronger (by a factor of 1/√k) compared 
to what is needed in Theorem 2. This improved bound comes for free given the value of 
s used in the construction of W and does not affect the tightness of the overall bound.

Finally, applying the union bound to eqns. (30), (33), (34), and (35), we conclude that 
if the number of sampled rows s satisfies

s ≥ max
{(

1 + ε

3

) 4 k ln (16 (1+k)/δ)
ε2 ,

8k
δ ε2

}
,

then all four structural conditions of Theorem 2 hold with probability at least 1 − δ. 
Therefore, the number of sampled rows s is, asymptotically (assuming that δ is constant), 
s = O (k ln k/ε2).

We conclude this section by noting that a similar proof strategy (using the same 
construction for the matrix Σ̃ of eqn. (28)) could also be used to prove that all five 
constructions of sketching matrices described in Lemma 11 of [8] return cost-preserving 
projections.

4.3. Ridge leverage score sampling

Our second approach constructs a sampling-and-rescaling matrix W using Algo-
rithm 1 with sampling probabilities pi that are proportional to the so-called ridge leverage 
scores [2,9] of the rows of the matrix A. To properly define the ridge leverage scores of 
the rows of A, we first define the r × r diagonal matrix Σλ as follows:

Σλ = diag
{

σ1√
σ2 + λ

, . . . ,
σr√
σ2 + λ

}
. (36)
1 r
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Recall that r is the rank of the matrix A. The i-th row ridge leverage score, denoted by 
τλi , of A with respect to the ridge parameter λ > 0 is given by

τλi �
(
A(ATA + λId)−1AT)

ii
= ‖(UΣλ)i∗‖2

2 , (37)

for i = 1, . . . , n. Recall that (UΣλ)i∗ denotes the i-th row of the matrix of all the 
left singular vectors of A, rescaled by the diagonal entries of Σλ. The last equality in 
eqn. (37) follows by using the SVD of A and the definition of the matrix Σλ. Let dλ
denote the sum of the ridge leverage scores, i.e.,

dλ =
n∑

i=1
τλi =

n∑
i=1

‖(UΣλ)i∗‖2
2 = ‖UΣλ‖2

F = ‖Σλ‖2
F . (38)

The last equality follows by the unitary invariance of the Frobenius norm. We can now 
define the sampling probabilities pi, i = 1, . . . , n, as

pi � τλi∑n
i=1 τ

λ
i

= τλi
dλ

=
‖(UΣλ)i∗‖2

2

‖Σλ‖2
F

. (39)

Clearly, 
∑n

i=1 pi = 1. In the remainder of this section, we will analyze the special case 
where

λ = ‖Ak,⊥‖2
F

k
. (40)

This is the case analyzed in [9] and the simplest known setting for λ that returns provably 
accurate approximations for cost-preserving projections via ridge leverage score sampling.

We now proceed to apply Theorem 2 in order to analyze the performance of the matrix 
W that is constructed using the ridge leverage scores as sampling probabilities. Recall 
that, as users of Theorem 2, we have full control of the construction of the matrix Σ̃. 
Towards that end, let

Σ̃ = Σλ. (41)

For the parameters associated with Σ̃ in eqn. (4), we will set q to r, the rank of the 
matrix A; and set m to be the index of smallest non-zero singular value of A such that

σ2
m ≥ λ ≥ σ2

m+1. (42)

Several observations follow from the above definitions. First of all, the diagonal entries 
of Σ̃ (denoted as di in eqn. (4)) are set to di = σi/

√
σ2
i +λ. We can upper-bound d−1

m as

d−1
m =

√
1 + λ

σ2
m

≤
√

2 ,
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where the last inequality follows from our choice for m in eqn. (42). This implies that 
the constant in the right-hand side of eqn. (9) is at most 4 + 2

√
2. Second, using our 

choices for m (eqn. (42)) and λ (eqn. (40)), we get

‖Ak,⊥‖2
F = kλ ≥ kσ2

m+1 ≥ σ2
m+1 + σ2

m+2 + . . . σ2
m+k .

Adding ‖Ak,⊥‖2
F on both sides of the above inequality yields

2 ‖Ak,⊥‖2
F ≥ (σ2

m+1 + σ2
m+2 + . . . σ2

m+k) + (σ2
k+1 + σ2

k+2 + . . . σ2
r)

≥ σ2
m+1 + σ2

m+2 + . . . σ2
r = ‖Am,⊥‖2

F , (43)

where the last inequality holds because m + k ≥ k + 1. Combining eqns. (31) and (43)
results in the following inequality, which will be quite useful in this section:

‖Am,⊥‖2
F ≤ 2 ‖Ak,⊥‖2

F ≤ 2 ‖AX‖2
F . (44)

Third, we can upper-bound the sum of the ridge leverage scores (denoted as dλ in 
eqn. (38)) as follows:

dλ = ‖Σλ‖2
F =

r∑
i=1

σ2
i

σ2
i + λ

=
k∑

i=1

σ2
i

σ2
i + λ

+
r∑

i=k+1

σ2
i

σ2
i + λ

≤ k +
r∑

i=k+1

σ2
i

λ
= k +

‖Ak,⊥‖2
F

λ
= k + k = 2k. (45)

In the above, we upper-bounded the top k diagonal entries of the matrix Σλ (squared) 
by one and the bottom r − k entries by σ2

i /λ. To conclude, we used our specific choice 
for λ from eqn. (40). Again, this upper-bound for dλ will be useful later in this section.

Satisfying the condition of eqn. (5) Applying Lemma 5 and setting s, the number of 
sampled rows, to be at least

s ≥
(
1 + ε

3

) 4 k ln (16 (1+2k)/δ)
ε2 ,

we obtain

P
(
‖ΣλUTWTWUΣλ − Σ2

λ‖2 ≥ ε
)
≤ δ

4 . (46)

In the above we used dλ ≤ 2k from eqn. (45).
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Satisfying the condition of eqn. (6) Applying Lemma 4, we get

E
[∥∥ΣλUTWTWAm,⊥ − ΣλUTAm,⊥

∥∥2
F

]
≤ 1

s

∥∥ΣλUT∥∥2
F
· ‖Am,⊥‖2

F

= dλ
s

‖Am,⊥‖2
F ≤ 4k

s
‖AX‖2

F . (47)

The last inequality follows since dλ = ‖ΣλUT‖2
F is upper-bounded by 2k from eqn. (45); 

we also used eqn. (44). Next, applying Markov’s inequality, if the number of sampled 
rows s ≥ 16 k/δε2, then

P
(∥∥ΣλUTWTWAm,⊥ − ΣλUTAm,⊥

∥∥
F
> ε ‖AX‖F

)
≤ δ

4 . (48)

Satisfying the conditions of eqns. (7) and (8) We start with eqn. (8). Using standard 
properties of the trace, we get

‖WAm,⊥‖2
F = ‖WUΣm,⊥‖2

F = tr
(
Σm,⊥UTWTWUΣm,⊥

)
= tr

(
Σm,⊥Σ−1

λ ΣλUTWTWUΣm,⊥
)

= tr
(
ΣλUTWTWUΣ2

m,⊥Σ−1
λ

)
. (49)

Similarly,

‖Am,⊥‖2
F = tr

(
ΣλUTUΣ2

m,⊥Σ−1
λ

)
. (50)

Combining Lemma 4 with eqns. (49) and (50), we have

E
[(
‖WAm,⊥‖2

F − ‖Am,⊥‖2
F

)2]
= E
[(

tr(ΣλUTWTWUΣ2
m,⊥Σ−1

λ − ΣλUTUΣ2
m,⊥Σ−1

λ )
)2]

≤ 1
s
‖ΣλUT‖2

F · ‖UΣ2
m,⊥Σ−1

λ ‖2
F = dλ

s
‖Σ2

m,⊥Σ−1
λ ‖2

F

≤ 2k
s

‖Σm,⊥‖2
F · ‖Σm,⊥Σ−1

λ ‖2
2 , (51)

where the last inequality follows from strong submultiplicativity and eqn. (45). Note that 
Σm,⊥Σ−1

λ is a diagonal matrix whose i-th diagonal entry is equal to

(Σm,⊥Σ−1
λ )ii =

{
0, i ≤ m ;√

σ2
i + λ, i ≥ m + 1 .

It now follows that
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‖Σm,⊥Σ−1
λ ‖2 =

√
σ2
m+1 + λ ≤

√
2λ =

√
2
k
‖Ak,⊥‖F ,

where the inequality follows from eqn. (42) and the last equality follows from eqn. (40). 
In addition, eqn. (44) yields

‖Σm,⊥‖2
F = ‖Am,⊥‖2

F ≤ 2‖AX‖2
F ,

and thus we get,

E
[(
‖WAm,⊥‖2

F − ‖Am,⊥‖2
F

)2] ≤ 2k
s

· 2‖AX‖2
F · 2‖Ak,⊥‖2

F

k
≤ 8

s
‖AX‖4

F , (52)

where the last inequality follows from eqn. (31). Using similar algebraic manipulations 
and Lemma 4, we obtain

E
(∥∥AT

m,⊥WTWAm,⊥ − AT
m,⊥Am,⊥

∥∥2
F

)
≤ 8

s
‖AX‖4

F . (53)

Next, applying Markov’s inequality and setting the number of sampled rows s ≥ 32k/δε2, 
we get

P

(∣∣‖WAm,⊥‖2
F − ‖Am,⊥‖2

F

∣∣ ≥ ε√
k
‖AX‖2

F

)
≤ δ

4 , (54)

P

(
‖AT

m,⊥WTWAm,⊥ − AT
m,⊥Am,⊥‖F ≥ ε√

k
‖AX‖2

F

)
≤ δ

4 . (55)

It is worth noting that the bound of eqn. (54) is stronger (by a factor of 1/√k) compared 
to what is needed in Theorem 2. This improved bound comes for free given the value of 
s used in the construction of W and does not affect the tightness of the overall bound.

Finally, applying the union bound to eqns. (46), (48), (54), and (55), we observe that 
if the number of sampled rows

s ≥ max
{(

1 + ε

3

) 4 k ln (16 (1+2k)/δ)
ε2 ,

32k
δ ε2

}
,

then all four structural conditions of Theorem 2 hold with probability at least 1 − δ. 
Therefore, the number of sampled rows s is, asymptotically (assuming that δ is constant), 
s = O (k ln k/ε2).

5. Other constructions for the sketching matrix W

In this section, we briefly point to various constructions for the sketching matrix 
W ∈ Rs×n. We are particularly interested in the case where the rows of W are pairwise 
orthogonal and normal, i.e., WWT = Is, and thus WTW is an orthogonal projector. 
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Several random projection–based constructions for the sketching matrix W were summa-
rized in [8], including the (relatively) sparse matrix of [1], the (very) sparse embedding 
matrix of [7], and the oblivious sparse norm-approximating projections (OSNAP) of [24]. 
In all three cases, the rows of W are not exactly orthonormal, but rather close to being 
orthonormal, i.e., WWT is approximately equal to the identity matrix. At the same 
time, [8] also considered cases where the rows of W are exactly orthonormal. One such 
case is a construction of W using a randomized SVD of A (see also [25,19]). In this case, 
the rows of W are approximations to the top s left singular vectors of A (see Theorem 8 
of [8] for details). Another case is the so-called non-oblivious random projection of [8]. 
In this case, the rows of W form an orthonormal basis for the range of AR, where R
is a Johnson–Lindenstrauss random projection matrix (see Theorem 16 of [8] for further 
details).

Our next result is a special case of Theorem 2 showing that if the sketching matrix 
W has orthonormal rows then only two of our structural conditions (eqns. (5) and (8)) 
suffice to ensure the projection-cost preservation guarantee.

Lemma 6. Let A ∈ Rn×d be the input matrix and let X ∈ Rd×(d−k) be any matrix 
satisfying XTX = I, with 1 ≤ k < d. Let the thin SVD of A be A = UΣVT. Recall the 
definition of Σ̃ from eqn. (4), and assume that the sketching matrix W ∈ Rs×n satisfies 
WWT = Is, as well as the following two conditions (for some accuracy parameter ε):∥∥∥Σ̃UTWTWUΣ̃ − Σ̃

2∥∥∥
2
≤ ε, and (56)∣∣‖WAm,⊥‖2

F − ‖Am,⊥‖2
F

∣∣ ≤ ε ‖AX‖2
F . (57)

Then, ∣∣‖WAX‖2
F − ‖AX‖2

F

∣∣ ≤ (d−2
m + 2 d−1

m + 1
)
ε ‖AX‖2

F . (58)

Proof. Again, for notational convenience, let Z � UT(In −WTW)U and Y � VTX. If 
W has orthonormal rows, then WTW is an orthogonal projector, i.e., it is idempotent 
and symmetric positive semi-definite (SPSD), with all its singular values equal to zero 
and one. Hence, Z is also SPSD and its square root Z1/2 is well-defined. Using the 
definitions of Z and Y, eqns. (56) and (57) become:∥∥Z1/2Σ̃

∥∥
2 ≤

√
ε, and (59)∥∥Z1/2Σm,⊥

∥∥
F
≤

√
ε
∥∥ΣY

∥∥
F
. (60)

We rewrite the left hand side of eqn. (58) as∣∣‖AX‖2
F − WAX‖2

F

∣∣ = ∣∣tr (XTAT (In − WTW
)
AX
)∣∣

=
∣∣tr (XTVΣUT (In − WTW

)
UΣVTX

)∣∣
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=
∣∣tr (YTΣZΣY

)∣∣ = ∥∥∥Z1/2ΣY
∥∥∥2
F
.

Thus, √
|‖AX‖2

F − WAX‖2
F | =

∥∥∥Z1/2ΣY
∥∥∥
F

=
∥∥∥Z1/2(Σm + Σm,⊥)Y

∥∥∥
F

≤
∥∥∥Z1/2ΣmY

∥∥∥
F

+
∥∥∥Z1/2Σm,⊥Y

∥∥∥
F
. (61)

Using norm invariance properties and the definition of Y, we get

‖AX‖2
F = ‖UΣVTX‖2

F = ‖ΣY‖2
F . (62)

Thus, it suffices to prove that√
|‖AX‖2

F − WAX‖2
F | ≤

√
ε (1 + d−1

m ) ‖ΣY‖F . (63)

Similarly to the proof of Theorem 2, using the commutativity property of diagonal ma-
trices and the fact that 

(
Σ̃ + Σ̃⊥

)
Σm = Σ̃Σm, we have

Σm = (Σ̃ + Σ̃⊥)−1(Σ̃ + Σ̃⊥)Σm = (Σ̃ + Σ̃⊥)−1Σ̃Σm

= Σ̃(Σ̃ + Σ̃⊥)−1Σm = Σ̃(Σ̃ + Σ̃⊥)−1
m Σm . (64)

Notice that 
(
Σ̃+ Σ̃⊥

)−1Σm = (Σ̃+ Σ̃⊥)−1
m Σm, where (Σ̃+ Σ̃⊥)−1

m ∈ Rr×r is a diagonal 
matrix whose top m diagonal entries are equal to those of 

(
Σ̃+Σ̃⊥

)−1 and the remaining 
r −m diagonal entries are set to zero. In order to bound the first term in eqn. (61), we 
use eqn. (64) as follows:∥∥∥Z1/2ΣmY

∥∥∥
F

=
∥∥∥Z1/2Σ̃(Σ̃ + Σ̃⊥)−1

m ΣmY
∥∥∥
F
≤
∥∥∥Z1/2Σ̃

∥∥∥
2
·
∥∥∥(Σ̃ + Σ̃⊥)−1

m

∥∥∥
2
· ‖ΣmY‖F

≤
√
ε d−1

m ‖ΣmY‖F =
√
ε d−1

m ‖AmX‖F ≤
√
ε d−1

m ‖AX‖
=

√
ε d−1

m ‖ΣY‖F . (65)

The first inequality is due to strong submultiplicativity; the second inequality follows 
from eqn. (59) and the fact that 

∥∥∥(Σ̃ + Σ̃⊥)−1
m

∥∥∥
2

= d−1
m ; and the last inequality uses 

‖AX‖2
F = ‖AmX‖2

F + ‖Am,⊥X‖2
F (by the matrix Pythagorean theorem). Next, using 

strong submultiplicativity and eqn. (60), we bound the second term of eqn. (61):∥∥∥Z1/2Σm,⊥Y
∥∥∥
F
≤
∥∥∥Z1/2Σm,⊥

∥∥∥
F
‖Y‖2 ≤

√
ε ‖ΣY‖F , (66)

where we used ‖Y‖2 = ‖VTX‖2 ≤ 1. Finally, we combine eqns. (61), (65), and (66) to 
get
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√
|‖AX‖2

F − WAX‖2
F | ≤

√
ε (1 + d−1

m ) ‖ΣY‖F ,

which concludes the proof. �
6. Conclusion

Building upon the definition of cost-preserving projections, we have presented a simple 
structural result connecting the construction of projection-cost preserving sketches to 
sketching-based matrix multiplication. Our work unifies and generalizes prior known 
constructions for projection-cost preserving sketches based on (variants of) the standard 
leverage scores, ridge leverage scores, as well as other constructions.

An interesting open problem would be to understand whether similar structural re-
sults for cost-preserving projections can be derived for other Schatten p-norms, e.g., for 
the Schatten infinity norm, which corresponds to the well-known matrix two-norm. Pre-
liminary work in this direction includes Lemma 26 in [8]; to the best of our knowledge, 
other Schatten p-norms have not been studied in prior work. Additionally, it would be 
interesting to study alternative sets of structural conditions that guarantee projection-
cost preservation, with the end goal of fully characterizing the problem by presenting 
both necessary and sufficient conditions for various Schatten p-norms.
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