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ABSTRACT
In many complex domains, the input data are often not suited for 
the typical vector representations used in deep learning models. 
For example, in relational learning and computer vision tasks, the 
data are often better represented as sets (e.g., the neighborhood 
of a node, a cloud of points). In these cases, a key challenge is to 
learn an embedding function that is invariant to permutations of 
the input. While there has been some recent work on principled 
methods for learning permutation-invariant representations of sets, 
these approaches are limited in their applicability to set-of-sets (SoS) 
tasks, such as subgraph prediction and scene classification. In this 
work, we develop a deep neural network framework to learn in-
ductive SoS embeddings that are invariant to SoS permutations. 
Specifically, we propose HATS, a hierarchical sequence model with 
attention mechanisms for inductive set-of-sets embeddings. We 
develop stochastic optimization and inference methods for learn-
ing HATS, and our experiments demonstrate that HATS achieves 
superior performance across a wide range of set-of-sets tasks.
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1 INTRODUCTION
Deep learning has been successfully applied to numerous applica-
tions in which the input data typically involves fixed-length vectors. 
Examples include image recognition, video classification, sentiment 
analysis, among many others. A critical aspect of vector represen-
tations is that the position of elements matter.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00

https://doi.org/10.1145/3292500.3330876

In many complex tasks, however, the input data are not well-

suited for vector representations. In particular, some domains ex-

hibit heterogeneous structure and the data are often better repre-

sented as sets: e.g., relational learning [12, 23, 24, 26, 30, 37], logical
reasoning [18, 31], scene understanding [3, 30], and object detection

from LiDAR readings [27, 40]. As there is no natural ordering to

the elements in a set, any model must jointly learn functions over

all the set elements in order to capture relational dependencies.

Initial work on learning neural-network models for heteroge-

neous set-inputs often transformed the data into variable-length

sequences [11, 12, 24]. However, these methods learn models (i.e.,
embedding functions) that are permutation-sensitive. In other words,

the output of the learned model (i.e., embedding) depends on the

order chosen for the input vector. For example, recurrent neural net-

works, which are commonly used in sequence-to-sequence (seq2seq)
models, are not invariant to permutations in the input sequence. In-

deed, Vinyals et al. [35] showed that the order of the input sequence

could significantly affect the quality of the learned model.

A more principled approach to learning functions over sets is to

learn an inductive embedding function that is permutation invariant
and which could be used to directly model the sets themselves.

More recent work has focused on developing principled approaches

to learning these set representations [19, 25, 35, 39, 40]. The key

contribution of these works has been to provide scalable methods

that can learn inductive embeddings which are provably invariant

to permutations of the input.

While these recent works provide principled approaches to learn-

ing over sets, they are not directly applicable to tasks where each

data instance is a set-of-sets (SoS). For example, subgraph prediction

tasks in relational data involve a set of nodes, each of which has a

set of neighbors. In LiDAR scene classification, each scene consists

of a set of point-clouds. Set-of-sets also arise in logical reasoning,

multi-instance learning, among other applications (see Section 5

for a few examples). In these tasks, the embedding function to be

learned needs to be invariant to two levels of permutations on the

input data—within each set, and among the sets. Effective neural

network architectures that learn inductive SoS embeddings need to

efficiently take into account both levels of permutation-invariance.

In this work, we formalize the problem of learning inductive
embedding functions over SoS inputs, and explore neural network

architectures for learning inductive set-of-sets embeddings. We

shall use the terms set and multisets (sets with repeated elements)

interchangeably, as our techniques apply to both scenarios.

Contributions. We begin by proving that inductive embeddings for

sets [25, 40] are not expressive enough to be used for SoS tasks.

We then propose a general framework for learning inductive SoS
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embeddings that preserve SoS permutation-invariance by extending

the characterization of sets in Murphy et al. [25] to sets-of-sets.

Our framework allows us to apply sequence models to learn-

ing inductive SoS embeddings. We propose HATS, a hierarchical,
sequence-attention architecture for learning inductive set-of-sets
embeddings. HATS utilizes two bidirectional long short-term mem-

ory (LSTM) networks. The first LSTM takes as input a sequence of

elements arranged in random order. This LSTM is applied to each

member set of the SoS, and the outputs are collectively fed into a

second bidirectional LSTM. The HATS architecture uses the concept

of hierarchical attention for sequence models, first introduced in

the context of document classification by Yang et al. [38]. However,

unlike the model in [38] (which is permutation-sensitive), HATS

is based on our SoS embedding framework and uses permutation
sampling to perform stochastic optimization. This allows HATS to

learn inductive SoS embeddings that are provably invariant to SoS

permutations. At inference time, we adopt an efficient Monte Carlo

procedure that approximately preserves this invariance.

In experiments, we show that HATS significantly outperforms ex-

isting approaches on various predictive tasks involving SoS inputs.

While the SoS permutation-invariance of HATS is only approxi-

mate due to our reliance on Monte Carlo sampling for inference,

our experiment results demonstrate that in practice HATS achieves

significant performance-gains over state-of-the-art approaches.

2 RELATEDWORK
Learning inductive set-embeddings has attracted much attention in

the literature [6, 8, 15, 19, 25, 29, 35, 39, 40]. In particular, Zaheer

et al. [40] provided a characterization for permutation-invariant

functions on sets, and designed a deep neural network architecture,

called deep sets, that could operate on set inputs. This approach was

later generalized by Murphy et al. [25], who proposed a general

framework for pooling operations on set inputs, termed Janossy
pooling. The key observation underlying their approach is that any

permutation-invariant function could be expressed as the average

of a permutation-sensitive function applied to all re-orderings of

the input sequence. Our characterization of sets-of-sets functions

in Section 3.2 is directly motivated by this insight.

Among other works, Ilse et al. [15] examined the task of multi-
instance learning [10, 22], where a class label is assigned to a set

of instances (called a bag), rather than a single instance. They pro-

posed to learn a permutation-invariant aggregation function using

a combination of convolutional neural networks (CNNs) and fully

connected layers as well as gated attention mechanisms. Vinyals

et al. [35] examined sequence-to-sequence (seq2seq) models with

set inputs and showed that standard seq2seq models such as LSTMs

are not invariant to permutations in the input; Lee et al. [19] pro-

posed attention-based architectures building upon transformer net-

works [34]; Bloem-Reddy and Teh [6] studied the group invariance

properties of neural network architectures from the perspective of

probabilistic symmetries.

The primary distinction between this work and previous works

on learning set functions lies in our observation that the input

examples in many applications are in fact sets-of-sets, rather than
(plain) sets, and we argue that their hierarchical nature deserves

particular treatment in modeling. This motivates us to move beyond

(single-level) sequence models to hierarchical ones when designing

the neural network architecture (see Section 4 for details), and our

experiments demonstrate that the hierarchical models yield signifi-

cant performance-gains in practice. We note that Hartford et al. [13]

studied matrix-factorization models for learning interactions across

two sets (users and movies) in the context of recommender systems.

However, their Kronecker-product–based approach is transductive

rather than inductive, and is designed for a very specific applica-

tion, whereas we are interested in general inductive embedding

approaches for sets-of-sets.

As with most recent works in the literature, we choose to param-

etrize the set-of-sets (SoS) permutation-invariant function using

deep neural networks, thanks to their expressiveness as universal

function approximators. Regarding the choice of neural network

architectures, we focus on recurrent neural networks (RNNs)—in

particular, long short-term memory (LSTM) networks. The choice

is in contrast to that made by Ilse et al. [15], who focused on

convolution-based approaches. As with many other works in the

literature [25, 35], we believe that sequence models are more ap-

propriate for modeling variable-size inputs. In Section 5 we demon-

strate empirically that the proposed LSTM-based models lead to

improved performance over the CNN-based model of [15] across a

variety of tasks and the less specialized use of LSTMs in [25]. We

further investigate attention-based mechanisms for hierarchical

LSTM models to enhance their capability of capturing long-range

dependencies. We note that similar hierarchical-attention architec-

tures have been considered for document classification [38] in the

natural language processing literature, but we adapt it to modeling

SoS functions in order to preserve permutation-invariance.

Methods for learning permutation-invariant functions on set

structures have direct implications to relational learning and graph

mining [7, 12, 24, 37], point-cloud modeling [27, 28] and scene un-

derstanding [3, 30] in computer vision, among other applications.

While we have conducted experiments on subgraph hyperlink pre-

diction and point-cloud classification tasks to evaluate the perfor-

mance of our proposed approaches, we emphasize that (as in e.g.,
[15, 25, 40]) the aim of our work is to provide a general charac-

terization and framework for modeling functions with sets-of-sets

inputs, rather than outperforming state-of-the-art approaches that

are crafted for specific applications. Importantly, the generality of

our proposed approach provides practitioners with the flexibility

of tailoring it to their specific tasks at hand.

3 INDUCTIVE SET-OF-SETS EMBEDDINGS
In this section, we provide a formal definition of inductive SoS

embeddings. An inductive embedding is a function that takes any

set-of-sets as input (including sets-of-sets not observed in the train-

ing data) and outputs an embedding that must remain unchanged

for any input that represents the same set-of-sets. This is in contrast

to transductive embedding methods such as matrix and tensor fac-

torizations, which cannot be directly applied to new data and do not

directly consider set-of-sets inputs. For convenience, henceforth we

shall use the term sets to refer to both sets and multisets. Multisets

are sets that allow duplicate elements [5].

3.1 Set-of-Sets (SoS) Inputs
A set-of-sets (SoS) is a multiset whose elements are themselves

multisets (which will shall refer to as member sets). The multisets
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belonging to an SoS can have varying sizes. An SoS can be naturally

represented as a list of lists of vectors; in this work, we shall repre-

sent an SoS as an n ×m × d tensor A, whose i-th “row” slice Ai,∗
corresponds to the i-th multiset, and the (i, j )-th fiber Ai j is a d-
dimensional vector corresponding to the j-th element of the i-th
multiset.

1
Here, n is the number of member sets in the SoS, and

m equals the cardinality of the largest member set (for the other

multisets, we pad their columns with a special null symbol “#”).

As an example, a point-cloud scene (which we shall examine in

Section 5) is a set of point-clouds, and each point is a vector in R3.
In this case, A is a three-mode tensor, with each fiber Ai j ∈ R3.

For an n ×m × d tensor A representing an SoS, the first two

modes of A must be treated as sets, while the third mode is treated

as a vector. The key distinction between a set and a vector is that
(i) a set may contain an arbitrary number of elements, while a

vector is generally of fixed-length; and more importantly, (ii) a set

is invariant to arbitrary permutations of its elements: if one is to

arrange the elements of a set in a vector a = [ai ]
m
i=1, then for any

permutation π : i 7→ π (i ) on the integers {1, . . . ,m}, both a and aπ
represents the same set (here, aπ denotes the permuted vector with

(aπ )i = aπ (i ) ). This means that if a function f is a representation

of a set, then f (a) = f (aπ ).
In this work, we shall be interested in functions that yield induc-

tive embeddings for set-of-sets inputs. Such SoS embeddings should

satisfy permutation-invariance on two different levels: (i) element-
level: the function should be invariant to permutations of elements

within each member set; and (ii) member-set-level: the function

should be invariant to permutations of the member sets within an

SoS. We formalize these notions in the next section.

3.2 Inductive SoS Embeddings
Notation. Let Πn denote the set of all permutations on the integers

{1, . . . ,n}. We shall adapt the notation in Murphy et al. [25] and

use a double-bar (as in f ) to indicate that a function taking SoS

inputs is invariant to permutations in the sense of Definition 1

(below).We shall use an arrow (as in f
⇀
) to denote arbitrary (possibly

permutation-sensitive) functions over SoS inputs. Functions over

scalars or vectors will be denoted without such annotations.

3.2.1 Definition and characterization. We begin by defining func-

tions that yield inductive set-of-sets (SoS) embeddings.

Definition 1 (Inductive SoS Embedding). A function f acting
on SoS inputs is an inductive SoS embedding if its output is invariant
under any permutation ϕ of the member sets, as well as permutations
π1, . . . ,πn of the elements in each member set. Formally, for any
n ×m × d tensor A,

f (A) = f (Aϕ,πϕ ), (1)

whereAϕ,πϕ denotes the n×m×d tensor with (i, j )-th fiber Ai, j equal
toAϕ (i ),πϕ (i ) (j ) . Equation (1) should hold for any permutationϕ of the
integers {1, . . . ,n}, as well as permutations {πi }ni=1 of {1, . . . ,m}.

2

1
In tensor terminology, the mode of a tensor is its number of dimensions; a slice is a
two-dimensional section of the tensor, defined by fixing all but two indices; and a fiber
is a one-dimensional section obtained by fixing every index but one [17].

2
We note that the permutations πi could be restricted to only permute the non-null

elements in the member set Ai∗ .

As an inductive embedding function, f should be applicable to

any SoS inputAwithout imposing any constraints on its dimensions

or values, as opposed to transductive embedding approaches.

The next proposition shows that inductive SoS embeddings can-

not be simply represented as inductive set-embeddings (such as

those studied in [6, 15, 25, 29, 40]) by some clever transformation

of the input. We defer its proof to Appendix A.

Proposition 1. There exists an inductive SoS embedding f that
cannot be represented as a (plain) set-embedding. Formally, for any
permutation-invariant set-embedding д, and any encoding scheme σ
(independent of f ) that transforms an SoSA into a plain setA = σ (A),
there exists an SoS A such that f (A) , д(σ (A)).

While set-embeddings are not expressive enough to represent

set-of-sets, we propose an alternative representation motivated

by the work of [25] and the concept of Janossy densities in the

theory of point processes [9]. We can characterize any scalar- or

vector-valued SoS permutation-invariant function as the average

of another (possibly permutation-sensitive) SoS function over all

possible member-set-level and element-level permutations:

Theorem 1. Given a function f
⇀
(which could be sensitive to input

permutations) that maps an n ×m ×d SoS tensor A to real- or vector-
values, consider the function

f (A) =
1

n! · (m!)n

∑
ϕ∈Πn



∑
π1∈Πm

· · ·
∑

πn ∈Πm

f
⇀
(Aϕ,πϕ )


, (2)

where Aϕ,πϕ denotes the tensor with (i, j )-th fiber Ai, j equal to

Aϕ (i ),πϕ (i ) (j ) . Then, f is invariant to SoS permutations.

Furthermore, if f
⇀
is modeled by a universal-approximator neural

network (as defined in Hornik et al. [14]), then f can approximate
any inductive SoS embedding arbitrarily well.

The proof is deferred to Appendix A. Theorem 1 provides critical

insight into how an inductive SoS embedding could be modeled.

In particular, while it is intractable to directly model f , we could

instead focus on tractable approaches for learning f
⇀
. Since f

⇀
does

not need to obey any SoS permutation-invariance constraints, we

are free to parameterize f
⇀
with any permutation-sensitive model.

Thus, as long as we have a sufficiently expressive model for f
⇀
,

we could in principle learn any SoS representation f mapping an

SoS A to a target value y (e.g., class label in classification tasks or

real-valued response in regression tasks). Before discussing how to

apply the characterization given by Equation (2) in practice, let us

examine its flexibility through a few examples.

3.2.2 Examples of SoS embeddings. We discuss several examples

of inductive SoS embeddings arising from concrete applications.

In Section 5, we will demonstrate that these functions could be

effectively learned in practice by exploiting Equation (2).

Basic set/multiset operations. Possibly the simplest examples of

SoS representation functions on sets-of-sets are those that involve

basic set/multiset operations, such as set union and intersection.

These allow one to compute various population statistics for an

SoS, such as counting or summing-up the (unique) elements in the

union or intersection across all the member sets in an SoS.
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Adamic/Adar index. In social network analysis, the Adamic/Adar
index [1] is a simple and popular measure of the similarity between

any two nodes in a network, which could be used to predict unseen

links between nodes. For a node v in the network, denote its set of

neighbors by Nv . The Adamic/Adar index between any two nodes

u and v is defined as

д(u,v ) =
∑

x ∈Nu∩Nv

1

log |Nx |
, (3)

where |Nx | gives the degree of node x . Compared to other similarity

measures such as the Jaccard coefficient, the Adamic/Adar index

down-weights the importance of shared neighbors with very large

neighborhoods. To see how Equation (3) could be cast in the form of

Equation (2), let A(u,v )
be an SoS consisting of two setsAu andAv ,

corresponding to the neighborhoods of nodes u and v , respectively.
Specifically, let Au = {(x , |Nx |) : x ∈ Nu } (and similarly for Av )
contain both the identifier and the degree of each neighboring node.

Then, it is clear that д(u,v ) can be expressed as an inductive SoS

embedding д(A(u,v ) ).
Multi-instance learning. In multi-instance learning [10, 22], the

training data is a collection of labeled bags, each containingmultiple

instances. Thus, the learner seeks to learn a function f mapping a

set to a class label. In many applications, such as predicting hyper-

links between subgraphs and anomaly detection with point-cloud

scenes (see Section 5 for more details on both tasks), each instance

within a bag is also a set, and the function to be learned is an

inductive SoS embedding that should be invariant to permutations

both within and across the instances in a bag.

4 LEARNING INDUCTIVE SOS EMBEDDINGS
In this section, we explore approaches to learning inductive SoS

embeddings f , as described in Definition 1, that maps an input

set-of-sets to a class label (in classification tasks) or real-valued

response (in regression tasks). In particular, we shall exploit the

characterization provided by Equation (2): rather than directly mod-

eling f , we seek to learn the function f
⇀
, which gives us the freedom

to apply any flexible family of models without being subject to the

constraints of SoS permutation-invariance. In view of their expres-

siveness and flexibility as universal function approximators, we

choose to model f
⇀
using deep neural networks. In Section 4.1, we

introduce our proposed neural network architecture; and in Sec-

tion 4.2, we examine stochastic optimization methods for tractably

learning f
⇀
, as well as Monte Carlo sampling procedures for trans-

forming the learned f
⇀
into an inductive SoS embedding f .

4.1 The HATS Architecture
We propose a hierarchical, sequence-attention architecture for

learning inductive SoS embeddings. used in document classifica-

tion [38] and adds two permutation layers, which are key ingredi-

ents in the tractable optimization and inference of HATS.

Background. Recurrent neural networks (RNNs) have been shown

to be very well-suited for modeling functions over variable-length

sequences. In particular, the use of parameter-sharing allows RNNs

to simultaneously achieve flexibility and expressiveness in cap-

turing complex interactions over variable-length sequences with

only a fixed number of parameters. In fact, Siegelmann and Sontag

[33] showed that (with exact computations) RNNs are universal
functions in that any function computable by a Turing machine

can be computed by an RNN of finite size. To alleviate the prob-

lem of vanishing or exploding gradients associated with capturing

long-range dependencies, gated RNNs such as long short-term mem-
ory networks (LSTMs) and gated recurrent units (GRUs) have been
proposed, and both have achieved great success in practical appli-

cations. We shall focus on LSTM-based architectures in this work.

We begin the description of HATS with a vanilla LSTM model

for modeling SoS functions, and then propose more sophisticated

designs that are tailored to the hierarchical nature of sets-of-sets.

4.1.1 LSTM model for sets-of-sets. The SoS input A is given by a

collection of sequences arranged in arbitrary order. We can model

the function f
⇀
in Equation (2) using an LSTM, which takes as input

a single sequence obtained by concatenating all “rows” {Ai∗}
n
i=1

(we collapse consecutive null symbols into a single “#”). The last

long-term memory state (or output state) of the LSTM is then fed

into a multi-layer perceptron to obtain the final embedding.

4.1.2 H-LSTM: Hierarchical LSTM model for sets-of-sets. By sim-

ply concatenating the constituent sequences within each set, the

vanilla LSTMmodel discussed previously does not take into account

the hierarchical nature of the sets-of-sets problem. In this section,

we propose to use a two-level hierarchical LSTM (H-LSTM) model

to capture the structure of sets-of-sets. Similar hierarchical LSTM

architectures have been studied in the natural language processing

literature (e.g., document classification [38]).

Given an input SoS tensor A consisting of n sets (viewed as

sequences) Ai,∗, i = 1, . . . ,n, with maximum cardinality m, the

first layer of the H-LSTM model applies a bidirectional LSTM to

each sequence Ai,∗ Specifically, let

−−→
hi j =

−−−−−→
LSTM1 (Ai j ),

←−−
hi j =

←−−−−−
LSTM1 (Ai j ), j = 1, . . . ,m (4)

denote the forward and backward hidden states for the j-th el-

ement in Ai,∗ obtained from the forward and backward LSTMs,

respectively. We obtain an annotation for Ai j by concatenating the

forward and backward hidden states: hi j =
[−−→
hi j ,
←−−
hi j

]
, which sum-

marizes the information pertaining to Ai j in the set Ai,∗. The last

hidden state of the trained LSTM then provides an embedding of

the whole set Ai,∗, which we denote as hi .
Existing approaches to modeling permutation-invariant func-

tions use various forms of pooling operations (e.g., max-pooling [27,

40] or Janossy pooling [25]) to aggregate the embeddings obtained

for each element in a set. While these simple approaches are guar-

anteed to be invariant to permutations in the input, they do not

allow flexibility to model complex interactions among the elements.

Instead, we propose to concatenate the embeddings hi obtained for
each set Ai,∗, and then apply another bidirectional LSTM to model

the dependencies among the set embeddings:

−→yi =
−−−−−→
LSTM2 (hi ),

←−yi =
←−−−−−
LSTM2 (hi ), yi =

[
−→yi ,
←−yi
]
, i = 1, . . . ,n.

(5)

The last hidden state of this upper-layer LSTM then provides an

overall embedding y of the SoS A that takes into account its hi-

erarchical structure. Finally, the target output (e.g., class label in
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classification tasks) can be modeled with a fully connected layer

using a softmax function.

4.1.3 HATS architecture. Capturing long-range dependencies is

especially important in modeling functions over sets. Unlike lan-

guage models, where adjacent words in a sentence often provide

more information than words that are farther apart, the elements

in a set are typically arranged in random order within a sequence,
3

and elements that appear in the early parts of the sequence contain

information that is equally relevant to the final output embedding

as those that are near the end.

Thus, when using a sequence model, such as an LSTM, to model

a function over sets, it is essential to ensure that the model is able

to capture both long-range and short-term dependencies. The same

argument also applies to the set-level: since there is typically no

canonical ordering for sets within an SoS, the top-level LSTM used

in the H-LSTM model of the previous section should also be able to

preserve long-range information in its final output embedding y.
While LSTMs hypothetically should be able to capture long-

range dependencies in sequences, in practice their performance are

often less than ideal. Intuitively, requiring the last hidden state of

an LSTM to encode information from a long input sequence into a

single fixed-length vector seems too much to ask for. Such inability

to capture long-range dependencies has aroused much concern in

the natural language processing and machine translation commu-

nities, and many clever tricks (such as reversing the order of the

input sequence) have been devised to improve their practical perfor-

mance. However, when modeling functions over sets, these tricks

are typically ineffective as the elements are arranged in random

order in the input sequence.

Rather than attempting to encode a whole input sequence into a

single fixed-bit vector (i.e., the last hidden state), attention mech-

anisms [2] adaptively compute a weighted combination of all the

hidden states during the decoding phase. By learning the weights in

the attention mechanism, the decoder could then decide on which

parts of the input sequence to focus on. This relieves the burden of

having to preserve all information in the input sequence from the

encoder, and allows the RNN to capture long-range dependencies.

In our context, different elements of a set may possess varying

degrees of importance to the task at hand. For instance, when pre-

dicting the unique number of elements in a set (see Section 5.1

for more details), elements that occur very frequently may be re-

garded as less important than rare elements. Similarly, inside an

SoS, smaller sets may contain less information than larger sets (or

vice versa). To capture long-range dependencies on both element-

level and set-level, we propose to adopt a hierarchical attention
mechanism in a hierarchical bidirectional LSTM.

Element-level attention. Given an input SoS A comprising the

sets Ai,∗, i = 1, . . . ,n, let hi j denote the annotation for the ele-

ment Ai j in set Ai,∗ obtained by concatenating the forward and

backward hidden states of Equation (4). We first pass hi j through
a feedforward layer with weightsW1 and bias term b1 to obtain a

hidden representation of hi j :

ui j = tanh(W1hi j + b1),

3
With the exception of domain-specific scenarios where a canonical ordering could be

imposed on the elements in the set; this is typically unavailable in general settings.

then compute the (normalized) similarity betweenui j and an element-

level context vector c1 via

αi j =
exp(u⊺i jc1)∑
j′ exp(u

⊺
i j′c1)

,

which we use as importance weights to obtain the final embedding

of the set Ai,∗:

hi =
∑
j
αi jhi j . (6)

Member-set-level attention. We feed the embeddings h1, . . . ,hn
obtained from Equation (6) into the upper-level bidirectional LSTM

and obtain the set annotations y1, . . . ,yn via Equation (5). Follow-

ing a similar manner as in element-wise attention, we compute

vi = tanh(W2yi + b2),

βi =
exp(v

⊺
i c2)∑

i′ exp(v
⊺
i′c2)

,

y =
∑
i

βiyi .

whereW2 and b2 are the weights and bias of another feedforward

layer, c is a set-level context vector, βi are importance weights,

and y is the final embedding for SoS A.
The overall hierarchical attention (HATS) model is illustrated in

Figure 1. The LSTM with element-level attention encodes each set

into a permutation-invariant embedding; the LSTM with member-

set-level attention then computes a final permutation-invariant

embedding for the SoS. The main difference from existing architec-

tures [38] lies in the two permutation layers. The lower permutation

layer performs an intra-set permutation for each set, while the up-

per layer performs an inter-set permutation. These two layers com-

bine to ensure that the learned model is SoS permutation-invariant.

4.2 Stochastic Optimization for HATS
The obvious caveat in applying Equation (2) to learning f in practice
is that the (n + 1) summations involved would be computationally

prohibitive in all but the simplest scenarios, especially since each

summation is over n! (for ϕ) orm! (for πi , i = 1, . . . ,n) possible
permutations and thus, is already intractable for moderate n andm.

To learn HATS, we adapt the stochastic optimization procedure

(π -SGD) of [25] to set-of-sets inputs.

ConsiderN labeled SoS training examples {(A(s ) , ys )}
N
s=1, where

A(s )
is a set-of-sets and ys is its label (class label in classification

tasks or real-valued response for regression tasks). Let ŷ be the

predicted label for the SoS input A. Consider a loss function L(y, ŷ)
such as squared-loss or cross-entropy loss. In general, L only needs

to be convex in ŷ, but it does not need to be convex with respect to

the neural network parameters θ = (W1,b1,W2,b2,θ1,θ2), where
θ1 and θ2 are the parameters of the two bidirectional-LSTMs.

We wish to learn an SoS function f ( · ;θ ) with parameters θ that

minimizes the empirical risk on the training data:

θ∗ = argmin

θ

N∑
s=1

L
(
ys , f (A(s )

;θ )
)
. (7)
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Figure 1: HATS architecture for SoS inputs.

Naturally, f should satisfy Definition 1, since the input set-of-sets

is invariant under SoS permutations. To avoid evaluating f (A;θ )
(which involves an intractable summation over all permutations in

Equation (2)), we will stochastically minimize an upper bound to

the objective in Equation (7).

Our optimization procedure is described in Algorithm 1. Rather

than summing over all permutations, we sample orderings uni-

formly at random from the space of permutations: ϕ̃ ∼ Uniform(Πn ),
π̃1, . . . , π̃n ∼ Uniform(Πm ), and compute

f̂ (A) = f
⇀
(Aϕ̃, π̃ (ϕ̃ ) ) . (8)

It is easy to see that Equation (8) provides an unbiased estimator:

Eϕ̃, π̃1, ..., π̃n
[ f̂ (A;θ )] = f (A;θ ) .

For the s-th training example, using the sampled permutations,

Algorithm 1 can be shown to optimize

Eϕ̃, π̃1, ..., π̃n
[L(ys , f̂ (A(s )

;θ ))] ,

Since L(ys , ·) is a convex function, by Jensen’s inequality,

Eϕ̃, π̃1, ..., π̃n
[L(ys , f̂ (A(s )

;θ ))] ≥ L(ys , f (A(s )
;θ )) .

Hence, Algorithm 1 optimizes a proper surrogate to the original

objective in Equation (7). In practice, one could also sample multiple

permutations and average over them in Equation (8) to reduce the

variance of the estimator.

The computational cost of optimizing HATS lies in backpropa-

gating the gradients through the neural network architecture (cf.
Figure 1) of the HATS model f

⇀
. Thus, the overall time complex-

ity of Algorithm 1 is equal to O (mndTB). At inference time, we

perform a Monte Carlo estimate of Equation (2) by sampling a few

permutations and performing a forward pass over the HATS neural

network. Our experiments show that in practice five to twenty

Monte Carlo samples are sufficient for estimating Equation (2).

Algorithm 1: Stochastic optimization for learning HATS.

Input: Labeled SoS training examples {(A(s ) , ys )}
N
s=1;

Input: HATS model f
⇀
(A;θ ) with unknown parameters θ ;

Input: Loss function L(y, ŷ);
Input: Number of optimization epochs T ;
Input: Mini-batch size B; learning-rate schedule {ηt }

T
t=1;

Output: Learned parameters θ for the model f
⇀
(A;θ ).

1 Initialize parameters θ (0)
;

2 for t = 1, . . . ,T do
3 дt ← 0 ;
4 for s in mini-batch-indices do

5 Ã(s )
← Permute the rows of A(s )

;

6 for i = 1, . . . , |Ã(s )
| do

7 Permute the entries of Ã(s )
i∗ ;

8 дt ← дt +
1

B∇θL(ys , f
⇀
(Ã(s )

;θ )) ;

9 θ (t ) ← θ (t−1) − ηtдt ;

10 return θ (T )

5 EXPERIMENTS
We demonstrate the utility of HATS and the stochastic optimiza-

tion procedure by conducting experiments on a variety of SoS tasks

spanning multiple applications, ranging from arithmetic tasks and

computing similarity measures between sets, to predicting hyper-

links across subgraphs in large networks, to detecting anomalous

point-clouds in computer vision.

Models. We evaluate the performance of our proposed models and

compare with several existing approaches in the literature (cf. Sec-
tion 2). We summarize all the models below:

DeepSet [40] : A feedward neural networkmodel with sum-pooling

to achieve permutation-invariance.

MI-CNN [15] : Convolutional network with gated attention mech-

anisms for permutation-invariant multi-instance learning.

J-LSTM [25]: The vanilla LSTM model of Section 4.1.1; equivalent

to applying the Janossy pooling method [25] using LSTMs.

H-LSTM : The hierarchical LSTM of Section 4.1.2.

HATS : The hierarchical attention network of Section 4.1.3.

Since DeepSet [40], MI-CNN [15], and J-LSTM [25] were origi-

nally designed for set (rather than SoS) inputs, we flatten each SoS

by concatenating its member sets into a single sequence as a prepro-

cessing step. The J-LSTM, H-LSTM, and HATS models are trained

using the framework described in Algorithm 1. The runtime com-

plexities of all methods are proportional to the size of the input data:
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O (mnd ). ForDeepSet [40], MI-CNN [15], and J-LSTM [25]we adopt

the authors’ implementations.
4
Details on the models and training

procedures are provided in Appendix B; code for reproducing all

experiments can be found at github.com/PurdueMINDS/HATS.

5.1 Simple Arithmetic Tasks
Similar to [25, 40], we begin by considering simple arithmetic tasks

that involve predicting summary statistics for sets-of-sets contain-

ing integers. In our experiments, each SoS contains n = 4 member

multisets, created by drawing m integers from {0, 1, . . . , 9} with

replacement. Given N = 10,000 SoS training examples, we predict:

∩ Binary : Whether the intersection of all member sets is empty.

∩ Sum : Sum of all elements in the intersection of all member sets.

∪ Sum : Sum of all elements in the union of all member sets.

Unique count : Number of unique elements across all member sets.

Unique sum : Sum of all unique elements across all member sets.

Note that the first three tasks (∩Binary, ∩ Sum, and ∪ Sum) are

interactive in that they require learning interactions across the

member sets of an SoS, while the last two tasks (Unique count and
Unique sum) are aggregative in that their results would remain

unchanged if one simply concatenated all the member sets into a

single set and computed the unique count/sum of its elements.

For each model, we use a validation set containing another 10,000

examples and evaluate its predictions on a held-out test set with

10,000 examples. For each task, we also experiment with two differ-

ent member-set sizesm. For each method, we conduct five random

trials and report the mean and standard deviations of their test-

set prediction accuracies. The results are shown in Tables 1 and 2;

for each task, we indicate the highest accuracy values (within two

standard errors) in boldface.

We observe that the sequence models (J-LSTM, H-LSTM, HATS)

significantly outperform MI-CNN and DeepSet on most tasks. This

shows that RNNs (learned with stochastic optimization) are more

suitable for modeling variable length inputs than CNNs or sum-

pooling (DeepSet). We also note that H-LSTM substantially out-

performs J-LSTM, which shows that modeling the hierarchical

structure of set-of-sets can better capture and decouple the inter-

set and intra-set dependencies. Furthermore, we observe that HATS

performs on par with or superior to H-LSTM, demonstrating the

effectiveness of the element-level and set-level attention mecha-

nisms in capturing higher-range dependencies within and across

member sets.

SoS improvement over aggregative tasks. The aggregative tasks (such
as Unique count and Unique sum) are essentially set tasks disguised

as SoS tasks, since concatenating all the member sets into a sin-

gle set suffices for these tasks. Intuitively, DeepSet, MI-CNN, and

J-LSTM should perform well on these tasks since the hierarchical

structure of SoS’s do not play a role in how the true label was gener-

ated. However, from Table 2 we still observe that by modeling what

is essentially a set function as an SoS function, H-LSTM and HATS

are still able to produce significant gains over the other approaches.

We believe that this is due to the fact that sequence models like

LSTMs still have trouble capturing long-range dependencies—by

4 https://github.com/manzilzaheer/DeepSets
https://github.com/AMLab-Amsterdam/AttentionDeepMIL
https://github.com/PurdueMINDS/JanossyPooling

segmenting a single long sequence into a collection of short se-

quences (i.e., modeling a set as an SoS), one could improve the

models’ capability of capturing dependencies among elements.

5.2 Computing the Adamic/Adar Index
In Section 3.2.2, we showed that the Adamic/Adar (A/A) index [1]

between two nodes in a network could be cast as an SoS function.

We perform experiments on the Cora [32] dataset,
5
in which we

evaluate J-LSTM, H-LSTM, and HATS approaches for predicting the

Adamic/Adar index between pairs of nodes using their neighbor

sets. More specifically, as described in Section 3.2.2, each input

SoS contains two neighbor sets; an element in each set is a tuple

containing the unique identifier of neighboring node and its degree.

Since computing the A/A index requires both node identifier and

degree information, it is not straightforward to transform the SoS

inputs into a single set. Thus, we only evaluate the A/A task over

methods that can operate with native SoS inputs. An added difficulty

is the variable number of neighbors of nodes.

We use N = 1,000 randomly sampled node-pairs for training,

1,000 for validation, and another 1,000 for held-out testing. We

compute the predicted A/A values for held-out test examples and

measure the mean-absolute error (MAE) and mean-squared er-

ror (MSE) between the model predictions and the true A/A index.

The results are shown in Table 3.
6
We observe that HATS attains

the lowest errors, followed by H-LSTM and then J-LSTM. We note

that computing the A/A index implicitly requires calculating the

intersection of two sets, which as our previous task has shown

(cf. Table 1), both HATS and H-LSTM perform well.

5.3 Subgraph Hyperlink Prediction
Modeling higher-order structures within a network have recently

attracted attention in relational learning and graph mining (e.g.,
[4, 21]). Here, our task is to learn SoS embeddings that can help

predict the existence of hyperlinks between subgraphs of a large

network. Specifically, a hyperlink exists between two subgraphs

if there is at least one link connecting two nodes from different

m-node induced subgraphs in a larger graph.

We perform experiments on three widely used network datasets:

the citation network Cora [32], the Wikipedia voting network

Wiki-vote in [20] and the protein-protein interaction network PPI
in [12]. Table 7 in Appendix 7 provides a summary of the network

statistics. For each network, we first obtain d = 256-dimensional

feature representations for each node using unsupervised Graph-

SAGE [12]. Given an SoS example consisting of the features of

every node in each subgraph, the task is to predict a binary label

indicating whether a hyperlink exists between the two subgraphs

in that SoS.
7
For each dataset, we also vary the subgraph sizem.

Table 4 shows the hyperlink prediction accuracies for each net-

work dataset. We observe that HATS and H-LSTM outperform the

other approaches in all tasks.

5
Table 7 in Appendix C summarizes the dataset statistics.

6
For evaluation, we only consider node-pairs whose neighborhoods overlap, since

the A/A index is trivially zero for node-pairs with disjoint neighborhoods.

7
Since the PPI network is much denser, we instead perform the multi-class classifica-

tion task of predicting the number of hyperlinks between subgraphs.
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Table 1: Prediction accuracies for interactive arithmetic tasks for different member-set sizem.

m = 5 m = 10

Methods ∩ Binary ∩ Sum ∪ Sum ∩ Binary ∩ Sum ∪ Sum

DeepSet [40] 0.742 (0.005) 0.765 (0.003) 0.078 (0.003) 0.900 (0.003) 0.069 (0.003) 0.873 (0.003)

MI-CNN [15] 0.741 (0.007) 0.739 (0.006) 0.425 (0.111) 0.904 (0.001) 0.071 (0.003) 0.873 (0.071)

J-LSTM [25] 0.729 (0.005) 0.762 (0.003) 0.956 (0.001) 0.271 (0.001) 0.599 (0.006) 0.870 (0.003)

H-LSTM 0.736 (0.003) 0.763 (0.002) 0.963 (0.061) 0.903 (0.002) 0.967 (0.009) 0.893 (0.012)

HATS 0.740 (0.007) 0.765 (0.002) 0.996 (0.005) 0.904 (0.003) 0.998 (0.001) 0.925 (0.012)

5.4 Point-Cloud SoS Classification
Point-clouds (i.e., sets of low-dimensional vectors in Euclidean space)

arise in many computer vision applications such as autonomous

driving using LIDAR data [27]. We perform experiments on the

ModelNet40 [36] point-cloud database which contains more than

12,311 point-clouds, each labeled as one of 40 classes (such as desk,
chair, or plane; see Figure 3 for some example visualizations) .

In our experiments, each SoS example, representing a point-

cloud scene, containsm = 10 point-clouds, and each point-cloud

comprises 2,000 points. We construct SoS examples in two different

ways to perform two prediction tasks:

Anomaly detection : Among the 10 point-clouds in each SoS, at

least 9 of them have the same class label, but there is a 50% chance

that the remaining one has a different label (i.e., is an anomaly).

Given such an SoS, the task is to predict whether this SoS contains

an anomalous point-cloud.

Unique-label counting : Each SoS consists of 10 randomly selected

point-clouds from the database. Given such an SoS, the task is to

predict the number of unique object types (labels) in the SoS.

For each task, we use N = 2,000 SoS examples for training, 1,000

for validation, and 2,000 held-out for testing. Table 5 shows the

prediction accuracies for each method on both tasks. Once again,

we observe that HATS performs best among all approaches.

To further gauge the relative performance of the sequence mod-

els, Figure 3 varies the sizem of each point-cloud (i.e., the number

of points it contains), and plot the resulting accuracies (along with

standard errors) for the anomaly detection task in Figure 3. We

observe that HATS consistently outperforms H-LSTM and J-LSTM,

m = 20 m = 40

Methods Unique count Unique sum Unique count Unique sum

DeepSet [40] 0.432 (0.009) 0.080 (0.002) 0.858 (0.002) 0.872(0.002)

MI-CNN [15] 0.071 (0.003) 0.873 (0.071) 0.860 (0.003) 0.876 (0.002)

J-LSTM [25] 0.942 (0.003) 0.955 (0.001) 0.858 (0.001) 0.872 (0.004)

H-LSTM 0.988 (0.007) 0.991 (0.002) 0.892 (0.007) 0.948 (0.069)

HATS 0.996 (0.006) 0.996 (0.007) 0.938 (0.03) 0.998 (0.002)

Table 2: Accuracies for aggregative tasks with different member-set sizem.

Models MAE MSE

LSTM 0.109 (0.001) 0.129 (0.005)

H-LSTM 0.107 (0.004) 0.120 (0.007)

HATS 0.103 (0.002) 0.108 (0.009)

Table 3: Predicting Adamic/Adar-index on Cora.

thanks to its attention mechanism for capturing long-range depen-

dencies even asm gets to 1,500 elements in the member sets.

For SoS’s whose member sets are rather large (for instance, each

point-cloud instance containsm = 2,000 points), one could further

speed up the training procedure of our proposed models by retain-

ing only the first k columns of the permuted SoS Ã fromm to a

smaller number k after line 5 of Algorithm 1. This approach can be

viewed as an example of imposing k-ary dependency restrictions [25]
to promote computational efficiency. For the point-cloud anomaly

detection task, Figure 3 investigates how such k-ary restrictions

affect prediction performance. We observe that even with small val-

ues of k , the loss in prediction accuracy remains tolerable, even as k
decreases from the originalm = 2,000 points (Table 5) to 50 points.

6 CONCLUSION
In this work, we formalized the problem of learning inductive em-

beddings over set-of-sets (SoS) inputs, and showed that embeddings

for sets [25, 40] are not expressive enough to be directly used for

modeling sets-of-sets. We then proposed a framework for learn-

ing permutation-invariant inductive SoS embeddings with neural

networks, and introduced HATS, a hierarchical sequence-attention

architecture with permutation layers, that is designed to better

capture intra-set and inter-set interactions in sets-of-sets while

maintaining SoS permutation-invariance. We developed stochastic

optimization and inference procedures for HATS, and demonstrated

its superior performance over a wide range of application tasks

involving SoS inputs.
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A PROOFS
Proof of Proposition 1. Consider an n ×m × d SoS tensor A with n,m > 1. Let f be an SoS embedding function that computes the

maximum member-set size: f (A) equals the maximum number of non-null elements in Ai,∗ across all i = 1, . . . ,n. Given any encoding

scheme σ (that does not utilize prior information in f ), consider the (plain) set A = σ (A) obtained via the encoding. If A does not contain

null “#” symbols marking the end of each member set, clearly the cardinality of each member set is irrecoverably lost. If A retains null “#”

symbols, because the output of any set-embedding д(A) needs to be invariant with respect to permutations of the elements in A, д(A) could
not depend on the locations of “#” within A, and any information regarding the member-set cardinalities are once again lost. □

Proof of Theorem 1. It is straightforward to verify that the function f defined in Equation (2) satisfies the requirement of Definition 1.

Next, we show that if f
⇀
is modeled by a universal-approximator neural network, then f (A) can approximate any inductive SoS embedding

of A arbitrarily well. We proceed via proof-by-contradiction.

Suppose that there exists an inductive SoS embedding f
′
that is not universally approximated by f . Define a permutation-sensitive

function f
⇀′

satisfying

f
⇀′

(Aϕ,πϕ ) = f
′
(A) + eϕ,πϕ , ∀ϕ ∈ Πn , π1, . . . ,πn ∈ Πm ,

where the “residuals” eϕ,πϕ are chosen such that

∑
ϕ∈Πn

[∑
π1∈Πm · · ·

∑
πn ∈Πm eϕ,πϕ

]
= 0. Then, f

⇀′
cannot be universally approximated

by f
⇀
, which contradicts the fact that f

⇀
is an universal approximator of permutation-sensitive functions, thus concluding the proof. □

B IMPLEMENTATION DETAILS
All models are implemented using Python 3.6 with PyTorch 1.0. The LSTM cells used in J-LSTM [25], H-LSTM, and HATS all have 20-

dimensional hidden states. The mini-batch size in Algorithm 1 is set to 32 for point-cloud classification tasks, and 128 for all other tasks.

DeepSet [40] was originally proposed to handle (plain) set-inputs rather than SoS inputs. We use the Adder function in the authors’ code to

aggregate the embedding of all the member sets within an SoS into a single embedding.

For all the LSTM-based models, we use the Adam optimizer [16] with initial learning-rate 0.001. For each method/task, we use the

validation set to select the best model as follows: during the training process, we retain the model that achieves the best validation metrics

on the validation set and use it for testing. The validation metrics, as well as hyper-parameter values and loss functions are summarized in

Table 6. Following [25, 40], we treat the simple arithmetic task as a regression task using L1-loss. Since the true values of the arithmetic tasks

are integers, we round the regression outputs to the nearest integers before computing the prediction accuracies.

Table 6: Implementation details for various tasks.

Arithmetic tasks Adamic/Adar index Subgraph hyperlink prediction Point-cloud classification

Task type Regression Regression Classification Classification

Loss function L1 L1 Cross-entropy Cross-entropy

Max. num. epochs 4000 4000 4000 2000

Validation metric Accuracy L1-loss Accuracy Accuracy

Num. training examples 10,000 10,000 10,000 2,000

Num. validation examples 10,000 10,000 10,000 1,000

Num. test examples 10,000 10,000 10,000 2,000

C DATASET STATISTICS
Table 7 summarizes the statistics of the network datasets used in Section 5.3.

Table 7: Summary of network dataset statistics.

Dataset |V | |E | #Classes

Cora [32] 2,708 5,429 7

Wiki-vote [20] 7,115 103,689 1

PPI [12] 3,890 76,584 50
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