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Essentially, all models are wrong, but some are useful.

— George E. P. Box (1919–2013)
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ABSTRACT

Yang, Jiasen Ph.D., Purdue University, August 2019. Statistical Learning and Model
Criticism for Networks and Point Processes. Major Professor: Jennifer Neville.

Networks and point processes provide flexible tools for representing and modeling

complex dependencies in data arising from various social and physical domains. Graphs,

or networks, encode relational dependencies between entities, while point processes

characterize temporal or spatial interactions among events.

In the first part of this dissertation, we consider dynamic network data (such as

communication networks) in which links connecting pairs of nodes appear continuously

over time. We propose latent space point process models to capture two different

aspects of the data: (i) communication occurs at a higher rate between individuals

with similar latent attributes (i.e., homophily); and (ii) individuals tend to reciprocate

communications from others, but in a varied manner. Our framework marries ideas

from point process models, including Poisson and Hawkes processes, with ideas from

latent space models of static networks. We evaluate our models on several real-world

datasets and show that a dual latent space model, which accounts for heterogeneity

in both homophily and reciprocity, significantly improves performance in various link

prediction and network embedding tasks.

In the second part of this dissertation, we develop nonparametric goodness-of-fit

tests for discrete distributions and point processes that contain intractable normaliza-

tion constants, providing the first generally applicable and computationally feasible

approaches under those circumstances. Specifically, we propose and characterize Stein

operators for discrete distributions, and construct a general Stein operator for point pro-

cesses using the Papangelou conditional intensity function. Based on the proposed Stein

operators, we establish kernelized Stein discrepancy measures for discrete distributions
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and point processes, which enable us to develop nonparametric goodness-of-fit tests

for unnormalized density/intensity functions. We apply the kernelized Stein discrep-

ancy tests to discrete distributions (including network models) as well as temporal and

spatial point processes. Our experiments demonstrate that the proposed tests typically

outperform two-sample tests based on the maximum mean discrepancy, which, unlike

our goodness-of-fit tests, assume the availability of exact samples from the null model.
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1. INTRODUCTION

Machine learning has proven very successful in the analysis of independent and iden-

tically distributed (i.i.d.) data. Much of the recent research in machine learning and

statistics focuses on developing models and methods that recognize and exploit de-

pendencies and heterogeneities in various aspects of the data. Two classes of models

will play an import role in this dissertation—network models for describing relational

dependencies, and point processes for characterizing temporal/spatial dependencies

and heterogeneities. The ability to capture sophisticated dependencies in data comes

at a cost of increased model complexity, rendering it difficult to assess the statistical

quality of the model fit. The contributions of this dissertation are twofold: we propose

latent space point process models for dynamic network data, and we develop statistical

goodness-of-fit tests for complex models involving intractable normalization constants,

with examples including network models and point processes.

1.1 Modeling Dependencies with Networks and Point Processes

Graphs, or networks, represent relational data that arise naturally in various social,

physical, and biological domains. Examples include social networks consisting of users

and their friendships, citation networks comprising articles with their co-citations, protein

interaction networks characterizing the physical contacts among protein molecules,

communication networks recording messages sent between individuals, and the World

Wide Web containing web pages and the hyperlinks between them.

Point pattern data, consisting of the locations of objects in some ambient space, occur

widely in the natural and social sciences. Point process models have been applied to

describe stars and galaxies (Babu and Feigelson, 1996), trees in a forest (Diggle, 2003),
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earthquakes and aftershocks (Ogata, 1988), neurons in the brain (Linderman et al.,

2014), and the dynamics of crime (Linderman and Adams, 2014).

In many applications, we encounter dynamic networks whose structures evolve over

time. For example, in a communication network, links encoding messages sent among

individuals (nodes) are recorded over a continuous period with their timestamps. Such

temporal information offers valuable insight into the evolution of the network structure

and the underlying relationships among individuals. In Chapter 4, we investigate two

main characteristics governing the appearance of links in a dynamic network: (i) com-

munication occurs at a higher rate between individuals with similar latent attributes—an

observation referred to as homophily in the social science literature; and (ii) individuals

tend to reciprocate communications from others, but in a manner that varies across

different individuals (see Figure 1.1 for an illustration). To capture both characteristics,

we employ latent space models to learn hidden node attributes underlying the network,

and point processes including Poisson and Hawkes processes to model the temporal

dynamics of link generation. Specifically, we model the communications between each

pair of nodes as realizations from a point process whose intensity function contains

two components: (i) a baseline rate depending on the distance between the nodes in a

homophily latent space; and (ii) a reciprocation rate depending on the positions of the

nodes in a different reciprocal latent space. Through careful ablation experiments on

several real-world networks, we show that such a dual latent space model (depicted in

Figure 1.2) achieves superior performance over models with a single latent space in a

variety of link prediction and network embedding tasks, and allows one to decouple the

influences of homophily and reciprocity in temporal interactions.

1.2 Statistical Model Criticism and Goodness-of-Fit Testing

Statistical techniques for model checking and diagnostics have lagged behind the

development of increasingly sophisticated machine learning models. Such techniques

are essential for us to gauge the utility and defects of opaque models, to enhance
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Figure 1.1.: Influences of homophily (top) and

reciprocity (bottom) in social interactions.

t

t

Homophily Reciprocal

Figure 1.2.: Dual latent space model.

their interpretability, and to identify aspects for their improvement. Statistical model

criticism, a term attributed to George Box, refers to the process of assessing how well

a model fits the observed data, without explicit reference to alternative models or

assumptions (O’Hagan, 2003). As Box (1976); Box and Draper (1986) famously noted,

“all models are wrong, but some are useful”; one could never validate whether a model

is true, but one could attempt to measure the degree to which it falsely describes the

data (Gelman and Shalizi, 2013). By identifying deficiencies in the current model,

criticism leads to a revised model, which could again be subject to criticism, and the

process continues until a satisfactory model is found (Seth et al., 2018). This iterative

process constitutes part of the data-analysis cycle, as illustrated in Figure 1.3, which Blei

(2014) termed Box’s loop based on the ideas in Box (1976, 1980).

A fundamental and well-studied model criticism technique is the goodness-of-fit test.

Classical goodness-of-fit tests, such as the χ2 test (Pearson, 1900); the Kolmogorov–

Smirnov test (Kolmogorov, 1933; Smirnov, 1948); and the Anderson–Darling test (An-

derson and Darling, 1954), have become essential tools in the practitioner’s toolbox.

These existing tests typically require the model distribution to be fully specified. In

modern applications, however, the distribution is often known only up to an intractable
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Data Infer parameters Apply modelDesign model

Criticize model

Figure 1.3.: The iterative process of data analysis; adapted from Box’s loop (Blei, 2014).

normalization constant; examples include large-scale graphical models, deep generative

models, and statistical models for network data. While a variety of approximate infer-

ence techniques such as Markov chain Monte Carlo (MCMC) and variational methods

have been studied to allow learning and inference in these models, it is usually hard to

quantify the approximation errors involved, rendering it difficult to establish statistical

tests with calibrated uncertainty estimates.

In the case of point processes, well-established goodness-of-fit tests are only available

under the simplest scenarios—such as when the null model is a Poisson process. For

more general point processes, the construction of such tests typically rely on pseudo-

likelihood approximations (Strauss and Ikeda, 1990) which introduce biases and errors

that are hard to quantify, or heuristic summary statistics (such as Ripley’s K-function)

which only capture certain aspects of the observed data and may lead to a considerable

loss of statistical power. For widely used models that capture pairwise or higher-order

dependencies between points (e.g., Gibbs processes), their density/intensity functions

can often be evaluated only up to a normalization constant, because summing over all

possible configurations leads to an intractable infinite-dimensional integral.

Recently, a new line of research (Gorham and Mackey, 2015; Oates et al., 2017;

Chwialkowski et al., 2016; Liu et al., 2016; Gorham and Mackey, 2017; Jitkrittum et al.,

2017) has developed goodness-of-fit tests which work directly with unnormalized model

distributions. Central to these tests is the notion of a Stein operator, originating from



5

Stein’s method (Stein, 1972, 1986) for characterizing convergence in distribution. Given

a distribution p(x ) on X d and a class of test functions f ∈ F on X d , a Stein operator

Ap satisfies Ex∼p

�

Ap f (x )
�

= 0, so that when Ap is applied to any test function f , the

resulting function Ap f has zero-expectation under p. Additionally, the expectation under

any other distribution q 6= p should be non-zero for at least some function f inF . When

F is sufficiently rich, the maximum value sup f ∈F Ex∼q

�

Ap f (x )
�

serves as a discrepancy

measure, called Stein discrepancy, between distributions p and q.

The properties of the Stein discrepancy measure depends on two objects: the Stein

operator Ap, and the set F . Different authors have studied different choices of F :

Gorham and Mackey (2015) considered test functions in the W2,∞ Sobolev space, and

the resulting test statistic requires solving a linear program under certain smoothness

constraints. On the other hand, Oates et al. (2017); Chwialkowski et al. (2016); Liu

et al. (2016) proposed taking F to be the unit ball of a reproducing kernel Hilbert space

(RKHS), which leads to test statistics that can be computed in closed form and with time

quadratic in n, the number of samples.

Regarding the choice of the Stein operator Ap, all the aforementioned works consider

the case when X ⊆ R is a continuous domain, p(x ) is a smooth density on X d , and

the Stein operator is defined in terms of the score function of p, sp(x ) = ∇ log p(x ) =

∇p(x )/p(x ), where ∇ is the gradient operator. Observe that any normalization constant

in p cancels out in the score function, so that if the Stein operator Ap depends on p

only through sp, then the Stein discrepancy sup f ∈F Ex∼q

�

Ap f (x )
�

can still be computed

when p is unnormalized. However, constructing the Stein operator using the gradient

becomes restrictive when one moves beyond distributions with smooth densities.

For discrete distributions, even in the simple case of Bernoulli random variables,

none of the aforementioned tests apply, since the probability mass function is no longer

differentiable. This motivates more general constructions of tests based on Stein’s

method that would also be applicable to discrete domains. In Chapter 5, we extend the

notion of Stein discrepancy to discrete distributions by defining an appropriate Stein

operator based on partial differences. Then, adopting a similar strategy as Chwialkowski
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et al. (2016); Liu et al. (2016), we develop a nonparametric goodness-of-fit test for

unnormalized discrete distributions. Furthermore, we propose a general characterization

of Stein operators that encompasses both discrete and continuous distributions, providing

a recipe for constructing new Stein operators. For any Stein operator constructed as

such, we could then define a kernelized Stein discrepancy measure to establish a valid

goodness-of-fit test. Finally, we apply our proposed goodness-of-fit test to the Ising

model, the Bernoulli restricted Boltzmann machine (Hinton, 2002), and the exponential

random graph model (Wasserman and Pattison, 1996). Our experiments show that the

proposed test typically outperforms a two-sample test based on the maximum mean

discrepancy (Gretton et al., 2012) in terms of power while maintaining control on

false-positive rate.

Unlike distributions over fixed-length vectors, point processes are inherently infinite-

dimensional distributions over sets containing an arbitrary number of points in some

underlying space. This fundamental difference precludes the construction of Stein opera-

tors using existing techniques, and requires a new set of tools. In Chapter 6, we construct

a suitable Stein operator for general point processes. While such constructions have been

well-studied for Poisson process approximations in the probability literature (Barbour,

1988; Barbour and Brown, 1992), constructions for general point processes have been

largely unexplored. Our key technical tool in constructing a general Stein operator is

the Papangelou conditional intensity of a point process (Papangelou, 1974). Importantly,

any (intractable) normalization constant in the density or intensity function of the point

process cancels out when evaluating the Papangelou conditional intensity. Next, we

define a positive-definite kernel on the space of point configurations using the maximum

mean discrepancy, which captures both extrinsic and intrinsic characteristics of the point

configurations. Using our proposed Stein operator and kernel function, we then define

a kernelized Stein discrepancy measure between point processes. This allows us to

develop a computationally feasible, nonparametric goodness-of-fit test for general point

processes, including those whose density/intensity functions contain intractable normal-

ization constants, such as Gibbs processes. We apply our proposed goodness-of-fit test to
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the Poisson process as well as two processes with inter-point interactions: the Hawkes

process (Hawkes, 1971) exhibiting self-excitation, and the Strauss process (Strauss,

1975) featuring repulsion. Our experiments demonstrate that the proposed test outper-

forms a two-sample test based on the maximum mean discrepancy in terms of power

while maintaining control on false-positive rate.

1.3 Contributions

This dissertation develops statistical models and model-criticism techniques for

learning from data exhibiting relational, temporal, and/or spatial dependencies. At

a high-level, the contributions of this dissertation fall into two flavors. On the one

hand, we propose latent space point process models to study dynamic interactions in

communication networks. On the other hand, we develop statistical model criticism

techniques (in particular, goodness-of-fit tests) for complex models involving intractable

normalization constants, with examples including network models and point processes.

More specifically, we make the following contributions:

• In Chapter 4, we study latent space point process models for dynamic networks.

– We propose a sequence of models, including a Poisson process latent space model,

two single-latent space Hawkes process models, and a dual-latent space model,

to capture and decouple the influences of homophily and reciprocity in temporal

interactions.

– We develop methodology to evaluate the proposed models, including static and dy-

namic link prediction tasks, as well as exploration of the learned node embeddings.

– We evaluate the utility of our models both quantitatively and qualitatively on three

real-world datasets, and show that incorporating both homophily and recipro-

cal latent spaces improves predictive performance and gives rise to interpretable

embeddings.
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• In Chapter 5, we develop a nonparametric goodness-of-fit test for unnormalized

discrete distributions, and propose a general characterization of Stein operators.

– We propose a difference Stein operator for discrete spaces, which allows us to define

a (kernelized) discrete Stein discrepancy measure and establish a goodness-of-fit

test for unnormalized discrete distributions.

– We propose a general characterization of Stein operators that encompasses both

discrete and continuous distributions, providing a recipe for constructing new Stein

operators.

– We apply our proposed goodness-of-fit test to the Ising model, the Bernoulli re-

stricted Boltzmann machine, and the exponential random graph model. Our experi-

ments show that the proposed test typically outperforms a two-sample test based

on the maximum mean discrepancy in terms of power while maintaining control

on false-positive rate.

• In Chapter 6, we propose a Stein–Papangelou operator for general point processes

and develop a computationally feasible, nonparametric goodness-of-fit test.

– We construct a suitable Stein operator for general point processes based on the

Papangelou conditional intensity function.

– We propose a positive-definite kernel on the space of point configurations using the

maximum mean discrepancy, and define a kernelized Stein discrepancy measure

for general point processes.

– We develop a computationally feasible, nonparametric goodness-of-fit test for gen-

eral point processes, including those whose density/intensity functions contain

intractable normalization constants.

– We apply our proposed goodness-of-fit test to the Poisson process, the Hawkes

process, and the Strauss process. Our experiments show that the proposed test

outperforms a two-sample test based on the maximum mean discrepancy in terms

of power while maintaining control on false-positive rate.
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1.4 Thesis Organization

This dissertation is organized as follows:

• In Chapter 2, we review the existing literature on models for networks and point

processes, and introduce notation that shall be used throughout the dissertation. In

Chapter 3, we review the fundamentals of reproducing kernel Hilbert spaces, and

discuss two classes of nonparametric hypothesis tests—a kernel two-sample test based

on the maximum mean discrepancy (Gretton et al., 2012), and a goodness-of-fit test

based on the kernelized Stein discrepancy (Chwialkowski et al., 2016; Liu et al., 2016).

The latter forms the basis of our developments in Chapters 5 and 6.

• Chapters 4, 5, and 6 constitute the main contributions of this dissertation. In Chapter 4,

we propose latent space point process models to capture and decouple the influences

of homophily and reciprocity dynamic networks. Chapters 5 and 6 turn to the study

of model criticism techniques for complex statistical models. In Chapter 5, we define

the notion of kernelized discrete Stein discrepancy, and develop a nonparametric

goodness-of-fit test for discrete distributions with intractable normalization constants.

In Chapter 6, we propose a Stein–Papangelou operator for general point processes,

and establish a computationally feasible kernel-based goodness-of-fit test for general

point processes.

• Finally, Chapter 7 concludes with a summary of the contributions in this dissertation,

and outlines directions for future research.

Figure 1.4 visualizes the dependency structure of Chapters 2–6. Each of these chapters

includes a short summary section reviewing the material covered in that chapter and

outlining its connection to other chapters.

The material presented in Chapters 4–6 have appeared in prior publications (Yang

et al., 2017, 2018, 2019). All three chapters are based on joint work with Vinayak Rao

and Jennifer Neville; Chapter 5 also involves collaboration with Qiang Liu.
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Chapter 4 
Decoupling Homophily and Reciprocity  

with Latent Space Network Models

Chapter 5 
Goodness-of-Fit Testing for Discrete  
Distributions via Stein Discrepancy

Chapter 2 
Models for Networks and Point Processes
2.1  Statistical Network Models 
2.2  Point Processes 

2.2.1  Temporal Point Processes 
2.2.2  General Point Processes  

Chapter 3 
Nonparametric Hypothesis Testing
3.1  Reproducing Kernel Hilbert Spaces 
3.2  Maximum Mean Discrepancy and  

Two-Sample Tests 
3.3  Stein Discrepancy and  

Goodness-of-Fit Tests

Chapter 6 
A Stein–Papangelou Goodness-of-Fit Test 

for Point Processes

Figure 1.4.: Dependency structure of Chapters 2–6.
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2. MODELS FOR NETWORKS AND POINT PROCESSES

Networks and point processes provide flexible tools for representing and modeling

complex dependencies in data arising from various physical and social domains. Graphs,

or networks, encode relational dependencies between entities, while point processes

characterize temporal or spatial interactions among events. In this chapter, we review

the relevant literature on network models and point processes, setting the stage for our

developments in subsequent chapters. Specifically, in Chapter 4, we propose latent space

point process models for decoupling homophily and reciprocity in dynamic networks; in

Chapters 5 and 6, we develop kernel-based goodness-of-fit tests for intractable discrete

distributions (including network models) and point processes, respectively.

2.1 Statistical Network Models

Graphs or networks, are useful representations of relational data natural to various

social, physical, and informational domains. Examples of network data include social

networks consisting of users and their friendships, citation networks comprising articles

with their co-citations, protein interaction networks characterizing the physical contacts

among protein molecules, communication networks recording messages sent between

individuals, and the World Wide Web containing web pages and the hyperlinks between

them. As such, modeling network data has been a topic of interest in fields ranging from

mathematics, physics, statistics, computer science, to the social sciences.

Mathematically, a graph (or network) G is written as G = (V, E), where V is the set of

vertices (nodes) and E ⊆ V × V is the set of edges (links). For example, in a network of

individuals on a social media platform like Facebook, V represents users and E encodes

undirected friendship relations. In a corporate email network, each node v ∈ V might

represent an employee in the corporation, and each edge (u, v), an email message sent
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from node u to node v. These two examples represent two different kinds of network

data: static and dynamic.

2.1.1 Static Network Models

Static network models have a rich history, with a few representative ones including the

Erdős-Rényi model (Erdős and Rényi, 1959), the small-world model (Watts and Strogatz,

1998), the preferential attachment model (Barabasi and Albert, 1999), the exponential

random graph model (Frank and Strauss, 1986; Wasserman and Pattison, 1996), the

stochastic blockmodel (Nowicki and Snijders, 2001), the latent space model (Hoff et al.,

2002), and the mixed-membership stochastic blockmodel (Airoldi et al., 2008). A survey of

these models can be found in Goldenberg et al. (2010). Two models will be of particular

interest to us in this dissertation: the exponential random graph (or p∗) model of Frank

and Strauss (1986); Wasserman and Pattison (1996), and the latent space model of Hoff

et al. (2002).

Exponential Random Graph Model

The exponential random graph model (ERGM) was developed in parallel within the

statistics and social science communities, and have since attracted much attention in

both communities. Origins of the ERGM could be traced back to the p1 model of Holland

and Leinhardt (1981) which takes the form of a log-linear model with fixed effects, and

the p2 model of van Duijn et al. (2004) which replaced the fixed effects with random

effects. While the most general form of the ERGM (also referred to as the p∗ model)

was given by Wasserman and Pattison (1996), we shall present a special case known as

the Markov random graph model (Frank and Strauss, 1986) for ease of interpretation.

The reader is referred to the surveys of Robins et al. (2007b); Goldenberg et al. (2010)

for details regarding the other models.
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Frank and Strauss (1986) showed that by assuming that any two edges in a graph

are independent if they do not share common nodes, the probability distribution of such

undirected Markov graphs could be characterized as

p(y) =
1

Z(θ ,τ)
exp

� n−1
∑

k=1

θkSk(y) +τT (y)

�

, (2.1)

where y ∈ {0, 1}n×n is a symmetric adjacency matrix, Sk(y) counts the number of edges

(k = 1) or k-stars (k ≥ 2) in y , T(y) counts the number of triangles, and Z(θ ,τ) is a

normalization constant. More general forms of ERGMs could include counts of other

(higher-order) structures in the formulation.

Notice that the normalization constant Z(θ ,τ) in Eq. (2.1) involves summing over

all possible 2(
n
2) configurations of y , which is computationally intractable unless n is

very small. Thus, to estimate the model parameters θ and τ, one could not directly

maximize the full likelihood function in the presence of Z(θ ,τ). Common approaches

to circumvent this issue include maximizing the pseudo-likelihood which calculates the

probability of observing each edge conditional on all the other dyads in the network, or

estimating the normalization constant Z(θ ,τ) using Monte Carlo methods. In particular,

the formulation of the pseudo-likelihood assumes the subgraph counts in Eq. (2.1)

to be independent, although this is usually not the case in practice (e.g., a triangle

consists of three 2-stars). As a result, pseudo-likelihood maximization could lead to

unreliable parameter estimates and standard errors (van Duijn et al., 2009). From

a model-specification perspective, certain ERGM parameterizations have been shown

to exhibit model and inferential degeneracies—namely, that the likelihood function

places disproportionate probability mass on only a few graph configurations, often those

corresponding to the empty or complete graph (Handcock et al., 2003). Such degenerate

behavior has been a topic of much theoretical and empirical investigation (Rinaldo et al.,

2009; Chatterjee and Diaconis, 2013; Shalizi and Rinaldo, 2013), and various remedies

have been proposed in the literature (Hunter and Handcock, 2006; Snijders et al., 2006;

Robins et al., 2007a). Notably, Hunter et al. (2008b) has carefully developed a set of

routines for the fitting, simulation, and diagnosis of ERGM models in the form of the
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ergm R package. Figure 2.1 shows five graph samples drawn from an EGRM on n= 20

nodes with parameters θ1 = −2, θk = 0 (k ≥ 2), and τ= 0.05 using the ergm package.

Figure 2.1.: Samples drawn from an EGRM on n= 20 nodes with parameters θ1 = −2,

θk = 0 (k ≥ 2), and τ= 0.05 using the ergm package (Hunter et al., 2008b).

The various model and inferential degeneracies exhibited by the ERGM raises the

question of formal statistical tests for assessing the model fit. Hunter et al. (2008a)

presented graphical diagnostics by comparing structural statistics of the observed network

with those of networks simulated from the fitted model. In Chapter 5, we develop a

kernel-based goodness-of-fit test for discrete distributions with intractable normalization

constants, and apply it to the ERGM as one example.

Latent Space Model

Latent space approaches to social network analysis were pioneered by Hoff et al.

(2002). In a latent space model, each node v ∈ V is mapped to a latent representation zv

in some space (e.g., the d-dimensional Euclidean space Rd). The probability puv of a link

between two nodes u and v is modeled as a function of their distance d(zu, zv) in the

latent space as well as other observed features of the nodes. The latent positions zv and

other model parameters are inferred from the observed network via maximum likelihood

estimation (MLE) or Markov chain Monte Carlo (MCMC) methods.

Compared to other models commonly used in social network analysis, the latent

space model offers several advantages. First, the latent space model directly reflects

the notion of homophily that has been observed in many social domains (McPherson
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et al., 2001): nodes with similar characteristics are more likely to form a tie as they will

be placed closer together in the latent space. Second, by utilizing the properties of the

underlying distance metric (specifically, the triangle inequality), the latent space model

automatically accounts for the notion of transitivity often found in social networks. Third,

by estimating the latent representations zv for each node v, the model effectively embeds

the nodes of the graph into e.g., the Euclidean space Rd . The resulting embeddings are

typically much more amenable to conventional analysis and visualization, and could be

directly used as feature vectors to perform downstream tasks such as node classification,

link prediction, and clustering (community detection).

We note that the popular stochastic blockmodel (Nowicki and Snijders, 2001) and the

mixed-membership stochastic blockmodel (Airoldi et al., 2008), both of which cluster

network nodes into communities by assigning a latent membership vector for each

node, could also be viewed as latent space models where the latent positions reside in

a probability simplex rather than an Euclidean space. Hoff (2008) further proposed

an eigenmodel that encompasses both latent class models (e.g., stochastic blockmodels)

and latent distance models as special cases. However, the resulting model is much less

interpretable due to the reliance on eigenvectors rather than communities or distances

(see e.g., Section 3.9 of Goldenberg et al. (2010) for a more detailed comparison of

these models).

Following the seminal work of Hoff et al. (2002), various extensions to the latent

space model have appeared in the network analysis literature. Hoff (2005) incorporated

random sender and receiver effects in a generalized linear model formulation to model

inhomogeneity of the actors, and applied the model to valued (non-binary) networks.

Handcock et al. (2007) introduced explicit clustering of the latent positions via a Gaus-

sian mixture model, allowing one to group the network nodes into multiple communities

based on their observed interactions. Krivitsky et al. (2009) further combined the two

approaches into a latent cluster random effects model that accounts for four common fea-

tures of social networks: homophily, transitivity, community structure and heterogeneity

in node degrees. In addition, Young and Scheinerman (2007) proposed an alternative
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to the original latent space model, which they termed the random dot-product model, by

parameterizing the link probability using the inner-product of the latent node positions

instead of their Euclidean distance (see Athreya et al. (2018) for a recent survey on

statistical inference for random dot-product graphs).

2.1.2 Dynamic Network Models

In many real-world applications, the network structure evolves over time, and one

often has access to fine-grained temporal information describing the evolution of the

network structure. For instance, new users join social networks like Facebook every day;

additionally, existing users may be connected by newly forged friendships. Similarly, in

a corporate email network, servers record the precise time-stamps of every message sent

between each pair of nodes.

In contrast to the extensive literature on static networks, statistical models for

dynamic networks are much less explored. Existing models (Sarkar and Moore, 2006;

Miller et al., 2009; Fan and Shelton, 2009; Fu and Xing, 2009; Hanneke and Xing, 2010;

Snijders et al., 2010; Durante and Dunson, 2014) typically assume that the available

data contain a sequence of graph snapshots captured at discrete time-points, and that the

network evolution follows Markov transitions. Such approximations discard important

information when one has exact time-stamps available for each link event, and require

modelers to choose a particular temporal resolution to study the underlying network

dynamics. A much more natural approach is to merge ideas from point process modeling

with network models.

Depending on the granularity of the observed temporal information, models for

dynamic networks typically fall into two categories: discrete-time or continuous-time.

Discrete-time models are used when the data comprise a sequence of graph snapshots

taken at regular (often equally spaced) points in time. For example, one could extract the

yearly co-authorship network of a group of researchers, or record the friendship network

of an undergraduate class across each school year. Continuous-time models typically
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assume that precises timestamps are available for the appearance of every node/link

in the network, as in the case of email communication networks (e.g., Klimmt and

Yang, 2004), where the time-stamps of every email message sent within a corporation is

recorded over a time period.

Latent space approaches have been adopted to model dynamic networks in both

discrete and continuous time. For the discrete-time setting, Sarkar and Moore (2006)

generalized the static model of Hoff et al. (2002) by allowing the latent node positions

to transition through a Markov process. Specifically, the node positions in the latent

space are allowed to change as time progresses (thus modeling e.g., friendships drifting

over time), but large moves are penalized and thus improbable under the model. Sewell

and Chen (2015) proposed a similar model that applies to both undirected and directed

networks. Also under the discrete-time setup, Heaukulani and Ghahramani (2013)

introduced a probabilistic latent feature propagation model, which allows the latent

features of a node in the current time-point to influence that of other nodes in the

next time-point based on the observed network information. Thus, the proposed model

is not only able to capture the notion of homophily, but also social influence among

individuals—i.e., that our current social relationships could influence both our personal

interests and our future social interactions.

Under the continuous-time setting, temporal point processes provide a natural tool

for modeling communications between individuals over time. Perry and Wolfe (2013)

used a multivariate point process with a Cox multiplicative intensity model to account

for homophily, sender–receiver effects, and multicast interactions (those involving a

single sender but multiple receivers) in directed networks. Blundell et al. (2012) applied

Hawkes processes (Hawkes, 1971) to model reciprocity between groups of individuals in

a dynamic network. As a simple example, in a communication network, a message sent

from node u to v at one point would increase the likelihood of node v getting back to u

with an reply in the near future. Hawkes processes are a class of point processes that

are well-suited for modeling such excitation patterns, and we shall define them more

formally in the next section. In Chapter 4, we combine the strengths of latent space
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models and point processes (including Poisson and Hawkes processes) to capture and

decouple the effects of homophily and reciprocity in dynamic networks.

2.2 Point Processes

Point pattern data, consisting of the counts and locations of objects in some space

(e.g., the d-dimensional Euclidean space Rd), occur widely in the physical and social

sciences. When d = 1, the underlying space typically indexes time, and the process is

called a temporal point process. When d > 1, the process is often termed a spatial point

process (one typically considers d = 2 or d = 3 in applications). A crucial distinction

between d = 1 and d > 1 is the existence of a natural ordering among the elements in R,

which is absent in Rd (d > 1). To establish intuition, we begin by reviewing examples of

temporal point processes before presenting the mathematical theory of general point

process. We caution that certain notions and properties of temporal point processes relies

on the ordering of the real line, and thus fail to generalize to spatial point processes.

2.2.1 Temporal Point Processes

Temporal point processes typically describe events occurring in time, so that the

underlying space is the non-negative real line R+. We write realizations of such events

as {N(t), t ≥ 0}, where N(t) is non-negative, integer, and non-decreasing, and gives the

number of events occurring in the time interval [0, t). The object {N(t), t ≥ 0} formally

corresponds to a counting measure (cf. Section 2.2.2), assigning to any interval [s, t) a

measure equal to the number of events in that interval. The special structure of the real

line, as well as the causal nature of temporal dynamics have led to a variety of models

for point process data on the real line. We describe two of them that will be fundamental

to our development in Chapter 4.

Poisson process. The Poisson process is the canonical example of a point process. It

is governed by a non-negative intensity (rate) function λ(t), and has two properties:
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(i) for any t > s, the number of events within the time interval [s, t), i.e., N(t)− N(s),

follows a Poisson distribution with mean
∫ t

s
λ(t)dt; and (ii) the number of events in

disjoint time intervals are independent random variables. A Poisson process is said

to be homogeneous if its intensity function is constant (λ(t)≡ λ), and inhomogeneous

otherwise. If the intensity λ(t) itself is random, then the point process is referred to as

a Cox process (or a doubly stochastic Poisson process).

Hawkes process. Hawkes processes (Hawkes, 1971) have attracted much attention

recently (Reinhart, 2018) by capturing deviations from the Poisson process assumptions.

Hawkes processes account for causality in the temporal dynamics of point pattern data by

modeling self-excitation (when a single point process is involved), and mutual excitation

or reciprocity (when collections of point processes are under study). The former is

relevant to modeling individual activities over time (e.g., hospital visits), while the latter

is useful for modeling activities on communication networks (e.g., email communications

between members of an organization). In both examples, an initial event is often a

trigger for a subsequent burst of activity.

Formally, let Ht := {N(s)}s<t denote the history of the point process prior to time t.

Define the conditional intensity function

λ(t|Ht) :=
E [dN(t)|Ht]

dt
(2.2)

as the instantaneous arrival rate of the point process given the history Ht . Then, a

Hawkes process is a point process with conditional intensity function

λ(t|Ht) = γ+

∫ t

0

g(t − s)dN(s) = γ+
∑

k: tk<t

g(t − tk) , (2.3)

where Ht := {tk : tk < t} consists of the event history at time t, γ is the base-rate,

and g(·) is a triggering kernel that characterizes the excitatory effect that a past event

has on the current event rate. For example, g(·) could be the exponential kernel

g(t) = βe−t/τ, t ≥ 0, implying that an event has an excitatory boost of magnitude β ,

which decays exponentially with a time-scale τ. More generally, when we have m
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processes {N1(t), N2(t), · · · , Nm(t)} that mutually excite one another, a multivariate

Hawkes process has the conditional intensity of the j-th process given by

λ j(t|{Hi(t)}mi=1) = γ j +
m
∑

i=1

∫ t

0

gi j(t − s)dNi(s) .

Here Hi(t) denotes the event history associated with the i-th process Ni(t) at time t;

this consists of all events up to time t that are seen by process i.

Likelihood function. Given a set of observed events {t i}ni=1 in an interval [0, T ), the

density (likelihood) function of a (conditional) intensity λ(t) is given by

L
�

λ(t) | {t i}ni=1

�

= e−Λ(0, T )
n
∏

i=1

λ(t i) , (2.4)

where Λ(0, T ) =
∫ T

0
λ(t)dt is the cumulative (conditional) intensity function. Different

point process models make different independence assumptions about λ(t).

2.2.2 General Point Processes

We now introduce the notation and tools for studying point processes on general

spaces. These notions will provide the basis for our development of goodness-of-fit tests

for general point processes in Chapter 6. For further details on the rich theory of point

processes, we refer the reader to the texts of Kingman (1992); Last and Penrose (2017)

for the Poisson process and the comprehensive volumes of Daley and Vere-Jones (2003,

2008) for the theory of general point processes.

Notation. Let X be a locally compact metric space with BX its Borel σ-algebra. We

will refer to X as the ground space, and consider point processes with points lying in

this space. In practice, X is usually a compact subset of the d-dimensional Euclidean

space Rd .

A configuration or realization of a point process on X is a locally finite counting

measure on (X,BX). We shall be primarily concerned with finite configurations in this
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work; these form finite integer-valued measures on (X,BX). Let us denote the space of

finite configurations on X by NX. While a configuration is formally defined as a counting

measure, we shall also identify it as a (locally) finite set of points, and describe it using

set-theoretic notations. Conversely, any (locally) finite set of points φ ⊆ X also defines

the configuration with set A having measure

φ(A) := |φ ∩ A|, ∀A∈ BX,

where | · | denotes the cardinality of a set. For a point x ∈ X, let δx denote the Dirac

measure centered at x . Given a point configuration φ ∈NX, the configurations φ +δx

and φ −δx correspond to the point-sets φ ∪ {x} and φ\{x}, respectively, and we shall

use the measure-theoretic and set-theoretic notations interchangeably.

Point process. Formally, a point process Φ on X is a random point configuration on X.

Define its intensity measure µ as

µ(A) := E [Φ(A)] , ∀A∈ BX.

When X ⊆ Rd , the intensity measure is typically given in terms of a positive function

λ(·) on X, called the rate or intensity function:

µ(A) =

∫

A

λ(x)dx .

Next, we describe a few point processes and introduce some important theoretical

tools along the way. We begin by revisiting the Poisson process in its full generality.

Poisson process. A point process Φ with intensity measure µ is called a Poisson process

if (i) the counting measure Φ is completely random, i.e., for any disjoint measurable

subsets A1, A2, . . . , Ak ∈ BX, the point counts Φ(A1),Φ(A2), . . . ,Φ(Ak) are independent

random variables; and (ii) for any set A∈ BX, Φ(A) follows a Poisson distribution with

mean µ(A).

The following result, known as the Mecke formula (see e.g., Last and Penrose, 2017),

characterizes the Poisson process through the expectation of integrals (sums) with
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respect to a Poisson process, where the integrand depends on both the point process

and a location in the ground space.

Theorem 2.2.1 (Mecke formula). Let µ be an s-finite measure and Φ be a point process

on X. Then Φ is a Poisson process with intensity measure µ if and only if

E
�∫

X
h(x ,Φ)Φ(dx)

�

=

∫

X
E [h(x ,Φ+δx)]µ(dx).

for all measurable functions h : X×NX→ R.

More complicated point processes relax the assumption of complete randomness. One

example is the Hawkes process described in Section 2.2.1. Another example is a general

class of point processes, known as Gibbs processes (Ripley and Kelly, 1977), that model

inter-point interactions in higher-dimensional spaces. These processes originated from

statistical physics, and have found a wide range of applications in stochastic geometry,

spatial statistics, and image analysis (van Lieshout, 2000).

Gibbs processes. The probability density of a Gibbs process (with respect to the unit-

rate Poisson process on X) takes the form:

f (φ) =
1
Z

exp

�

−
|φ|
∑

k=1

∑

ω⊆φ, |ω|=k

vk(ω)

�

,

where vk : X→ R is called the k-th order interaction potential, and Z is a normalization

constant. Note that this normalization constant involves summing over all possible

configurations φ ∈ NX, an infinite-dimensional integral which is intractable in all but

the simplest situations (e.g., the Poisson process: a Gibbs process with vk ≡ 0, ∀k > 1).

Papangelou conditional intensity. The key challenge in generalizing the notion of

conditional intensity (Eq. (2.2)) for temporal point processes to spatial point processes

is the lack of a natural ordering in Rd when d > 1: the ‘history’ of the process is not
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defined. For a point process Φ with density f , we follow Baddeley et al. (2005) and

define its Papangelou conditional intensity (Papangelou, 1974) as

ρ(x |φ) =











f (φ ∪ {x})
f (φ)

if x 6∈ φ;

f (φ)
f (φ\{x})

if x ∈ φ,
(2.5)

for x ∈ X and φ ∈ NX. We set ρ(x |φ) = 0 if f (φ) = 0. Informally, ρ(x |φ)dx

represents the relative probability of there being a point of Φ lying within an infinitesimal

region of area dx containing x , given that the rest of the point process Φ coincides

with φ (Baddeley et al., 2005). Thus, the Papangelou conditional intensity provides an

intuitive characterization of a point process.1

For a Poisson process, its complete randomness ensures that its Papangelou condi-

tional intensity is equivalent to its intensity: ρ(x |φ)≡ λ(x), ∀x ∈ X, φ ∈NX.

For a Hawkes process with density function given by Eq. (2.4), its Papangelou condi-

tional intensity takes the form:

ρ(x |{t i}ni=1) = e−
∫ T−x

0 g(s)ds ·
�

γ+
∑

k: tk<x

g(x − tk)
�

·
∏

i: t i>x

γ+
∑

k: tk<t i
g(t i − tk) + g(t i − x)

γ+
∑

k: tk<t i
g(t i − tk)

.

Notice that the Papangelou conditional intensity is different from the conditional intensity

function λ(t|Ht) of Eq. (2.2) which conditions only on events prior to t.

For a Gibbs process, although its density f and intensity function λ are both in-

tractable, the normalization constant Z cancels out when evaluating Eq. (2.5), and the

Papangelou conditional intensity is fully available:

ρ(x |φ) = exp

�

−
|φ|
∑

k=1

∑

ω⊆φ, |ω|=k−1

vk({x} ∪ω)
�

. (2.6)

An illustrative instance of Gibbs processes is the Strauss process (Strauss, 1975), a

popular repulsive point process.

1The Papangelou conditional intensity could also be defined using the notion of Janossy densities; see
Section 5.3 of Daley and Vere-Jones (2003) and Section 15.5 of Daley and Vere-Jones (2008) for details.



24

Strauss process. The Strauss process is a spatial point process on X ⊆ Rd with condi-

tional intensity

ρ(x |φ) = βγtr (x ,φ), (2.7)

where β > 0, γ ∈ [0, 1], and

t r(x ,φ) :=
∑

y∈φ

I{‖x − y‖2 ≤ r}

counts the number of points in φ that lie within a distance r > 0 of the location x .

Notice that Eq. (2.7) can be recovered from Eq. (2.6) by setting

v1({x})≡ −β , v2({x , y}) = −(logγ) · I{‖x − y‖2 ≤ r}, vk(ω)≡ 0, ∀k > 2.

While the conditional intensity of the Strauss process takes the simple form of Eq. (2.7),

its density and intensity functions are generally computationally intractable for d ≥ 2.

We conclude this section by reviewing an important identity that generalizes the

Mecke formula (Theorem 2.2.1) to any finite point process. This identity, known as the

Georgii–Nguyen–Zessin (GNZ) formula (see e.g., Daley and Vere-Jones, 2008), will serve

as an essential tool in our development of a Stein operator for general point processes

in Chapter 6.

Theorem 2.2.2 (Georgii–Nguyen–Zessin (GNZ) formula). Let Φ be a finite point process

onX with Papangelou conditional intensity ρ. For any measurable function h : X×NX→ R,

E
�∫

X
h(x ,Φ\{x})Φ(dx)

�

= E
�∫

X
h(x ,Φ)ρ(x |Φ)dx

�

.

2.3 Summary

In this chapter, we have reviewed the existing literature on statistical network models

(including in particular, the exponential random graph model and the latent space

model), as well as the terminology, concepts, and examples of point processes (including

the Poisson, Hawkes, Gibbs, and Strauss processes). In Chapter 4, we shall bring the

strengths of latent space models and temporal point processes to model communications
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in dynamic networks. In Chapters 5 and 6, we shall develop goodness-of-fit tests for

assessing the fit of statistical network models (more generally, unnormalized discrete

distributions) and point processes to observed data. The proposed tests rely on the

recently introduced notion of kernelized Stein discrepancy (Chwialkowski et al., 2016;

Liu et al., 2016), which we discuss in the next chapter.
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3. NONPARAMETRIC HYPOTHESIS TESTING

Kernel methods provide a powerful toolkit in designing nonparametric hypothesis tests.

These kernel-based test statistics typically involve embeddings of probability distributions

into reproducing kernel Hilbert spaces, a concept we review in Section 3.1. In Section 3.2,

we describe a well-known kernel two-sample test statistic, the maximum mean discrepancy

of Gretton et al. (2012). In Section 3.3, we discuss some recent developments in

goodness-of-fit testing using Stein’s method (Stein, 1972, 1986; Gorham and Mackey,

2015; Chwialkowski et al., 2016; Liu et al., 2016), which lay the groundwork for our

developments in Chapters 5 and 6.

3.1 Reproducing Kernel Hilbert Spaces

Our exposition in this section shall mainly follow Sejdinovic and Gretton (2012); we

refer the reader to Rudin (1991) for the relevant background on functional analysis.

Let H be a Hilbert space with inner-product 〈·, ·〉H and norm ‖ · ‖H . The Riesz

representation theorem (Rudin, 1991) states that for any continuous linear functional

L :H → R, there exists a unique g ∈H , such that L f = 〈 f , g〉H , ∀ f ∈H .

Definition 3.1.1 (Evaluation functional). LetH be a Hilbert space of functions f : X → R.

For a fixed x ∈ X , the linear map δx :H → R, f 7→ δx( f ) = f (x) is called the (Dirac)

evaluation functional at x.

Definition 3.1.2 (Reproducing kernel Hilbert space). A Hilbert space H of functions

f : X → R is said to be a reproducing kernel Hilbert space (RKHS) if δx is continuous

(bounded) for all x ∈ X , i.e., there exists M > 0 such that |δx( f )|= | f (x)| ≤ M‖ f ‖H for

all f ∈H .
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Definition 3.1.3 (Reproducing kernel). LetH be a Hilbert space of functions f : X → R.

A function k :H ×H → R is called a reproducing kernel ofH if

(i) ∀x ∈ X , k(·, x) ∈H .

(ii) ∀x ∈ X , ∀ f ∈H , 〈 f , k(·, x)〉H = f (x).

The second property in Definition 3.1.3 is called the reproducing property. In particu-

lar, for any x , y ∈ X , we can write

k(x , y) = 〈k(·, x), k(·, y)〉H . (3.1)

A reproducing kernel, if it exists, is unique. Applying the Riesz representation theorem

to the evaluation functional, it can be shown (Sejdinovic and Gretton, 2012) that:

Theorem 3.1.1. A Hilbert spaceH is a reproducing kernel Hilbert space if and only ifH

has a reproducing kernel.

In fact, the function k(·, x) is a representer of evaluation at x:

〈 f , k(·, x)〉H = f (x) = δx f .

Definition 3.1.4 (Kernel). A function k : X ×X → R is said to be a kernel on X if there

exists a Hilbert spaceH and a map φ : X →H , such that for all x , y ∈H ,

k(x , y) = 〈φ(x),φ(y)〉H .

The map φ : X →H is called the feature map, and the spaceH the feature space.

Definition 3.1.5 (Positive-definite function). A symmetric function h : X × X → R is

positive-definite (p.d.) if for all n≥ 1, a1, . . . , an ∈ R, and x1, . . . , xn ∈ X ,

n
∑

i=1

n
∑

j=1

aia jh(x i, x j)≥ 0.

The function h(·, ·) is strictly positive definite if for mutually distinct x1, . . . , xn, equality

holds only when a1 = · · ·= an = 0.
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From Definition 3.1.4, it is easy to see that kernel functions are positive-definite.

By Eq. (3.1), every reproducing kernel is a kernel. The next theorem shows that every

positive-definite function identifies a unique RKHS H , for which k is a reproducing

kernel. Therefore, all three notions—reproducing kernel, kernel, and positive-definite

function—are effectively equivalent.

Theorem 3.1.2 (Moore–Aronszajn). Let k : X ×X → R be a positive-definite function.

There exists a unique RKHSH of functions f : X → R with reproducing kernel k. Specifi-

cally,H is given by the closure of span{k(·, x) : x ∈ X } endowed with the inner-product

〈 f , g〉H =
n
∑

i=1

m
∑

j=1

αiβ jk(x i, y j)

for functions f =
∑n

i=1αik(·, x i) and g =
∑m

j=1β jk(·, y j).

The Moore–Aronszajn theorem provides a construction of an RKHSH from a kernel k

without imposing additional assumptions on X or k. If one assumes that X is a compact

metric space and k a continuous p.d. function, an alternative construction ofH can be

obtained using the spectral theory of compact operators.

Mercer representation. Define the integral operator associated with kernel k as

(Tk f )(x) =

∫

k(x , y) f (y)dy

for functions f ∈ L2(X ). The symmetry of k implies that Tk is a self-adjoint operator, i.e.,

〈 f ,Tk g〉H = 〈Tk f , g〉H , ∀ f , g ∈ L2(X ); the positive-definiteness of k implies that Tk is a

positive operator, i.e., 〈 f ,Tk f 〉H ≥ 0, ∀ f ∈ L2(X ); and the continuity of k implies that Tk

is a compact operator (Sejdinovic and Gretton, 2012). By the spectral theorem (Rudin,

1991), Tk can be diagonalized in an orthonormal basis comprising its (at most countable

set of) eigenfunctions. This leads to the following representation:

Theorem 3.1.3 (Mercer). Let k(·, ·) be a continuous kernel on a compact metric space X .

Then for any x , y ∈ X ,

k(x , y) =
∞
∑

j=1

λ je j(x) e j(y) ,
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where {e j} and {λ j} are the orthonormal eigenfunctions and positive eigenvalues of the

integral operator Tk, and the convergence is absolute and uniform on X ×X .

Thus, the RKHSH of k consists of linear combinations of the eigenfunctions of Tk:

H =

¨∞
∑

j=1

a je j :
∞
∑

j=1

a2
j

λ j
<∞

«

,

equipped with the inner-product

〈 f , g〉H =
∞
∑

j=1

a j b j

λ j

for functions f =
∑

j a je j and g(·) =
∑

j b je j.

We conclude this section by introducing the notion of vector-valued reproducing

kernel Hilbert spaces which we shall employ in Section 3.3 and in Chapter 5.

Vector-valued RKHS. AssumeH is a scalar-valued RKHS with positive-definite kernel

k(·, ·). Denote by H d = H × · · · × H the Hilbert space of vector-valued functions

f = { fl : fl ∈ H }dl=1, equipped with an inner-product 〈 f , g 〉H d =
∑d

l=1 〈 fl , gl〉H for

f = { f`}d`=1 and g = {g`}d`=1, and induced norm ‖ f ‖H =
Æ
∑

` ‖ f`‖2
H . Then H d is a

vector-valued RKHS, with a matrix-valued positive-definite kernel K(x , y) = k(x , y) I d .

The reproducing property for this vector-valued RKHS is

cT f (x) = 〈 f , ck(·, x)〉H d

for any f ∈H d and c ∈ Rd .

3.2 Maximum Mean Discrepancy and Two-Sample Tests

In this section, we review a well-known kernel two-sample test statistic, known as

the maximum mean discrepancy, proposed by Gretton et al. (2012).

Let X and Y be random variables on a topological space X with respective Borel

probability measures p and q. In the two-sample testing problem, we are given i.i.d.



30

observations {x i}mi=1 ∼ p and {y j}nj=1 ∼ q, and would like to test the hypotheses H0 : p = q

vs. H1 : p 6= q.

One approach of constructing a test statistic is to design an integral probability

metric (IPM) (Müller, 1997) of the form

γF (p, q) := sup
f ∈F

�

�Ex∼p [ f (x)]−Ey∼q [ f (y)]
�

� , (3.2)

for some class F of functions f : X → R. Many well-known metrics can be recovered

under the IPM framework using different choices of F (Sriperumbudur et al., 2012);

see Table 3.1 for some examples. In particular, by taking F = { f : ‖ f ‖H ≤ 1} in

Eq. (3.2) to be the unit-ball in an RKHS with kernel k, we obtain the maximum mean

discrepancy (MMD) (Gretton et al., 2012).

Table 3.1.: Examples of integral probability metrics.

F Metric

{ f : ‖ f ‖∞ ≤ 1} Total variation distance

{1(−∞, t] : t ∈ R} Kolmogorov distance

{ f : ‖ f ‖L ≤ 1} Kantorovich metric (L1-Wasserstein distance)1

{ f : ‖ f ‖∞ + ‖ f ‖L ≤ 1} Dudley metric

{ f : ‖ f ‖H ≤ 1} Maximum mean discrepancy

Define the mean embedding of p to be an element µp inH such thatEp [ f ] =



f ,µp

�

H

for all f ∈ H . Assuming that k(·, ·) is measurable and Ep[
p

k(x , x)] <∞, it can be

shown that µp ∈ H exists, and is given by µp = Ex∼p [k(·, x)]. The mean embedding

provides an alternative representation of the MMD:

MMDH (p, q) = sup
‖ f ‖H ≤1

�

�Ep [ f ]−Eq [ f ]
�

�= sup
‖ f ‖H ≤1

�

�




µp −µq, f
�

H

�

�= ‖µp−µq‖H . (3.3)

1Here, ‖ f ‖L := supx 6=y∈X
| f (x)− f (y)|

d(x ,y) denotes the Lipschitz semi-norm of a bounded continuous real-valued
function f on a metric space (X , d).
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IfH is universal,2 then the mean embedding µ is injective, and MMD(p, q) is a metric

on the space of Borel probability measures on X .

Using the reproducing property of H (cf. Eq. (3.1)), one can further express the

squared population MMD as

MMD2
H (p, q) = Ex ,x ′∼p

�

k(x , x ′)
�

+Ey,y ′∼q

�

k(y, y ′)
�

− 2Ex∼p, y∼q [k(x , y)] . (3.4)

Given i.i.d. samples {x i}mi=1 ∼ p and {y j}nj=1 ∼ q, Eq. (3.4) suggests an unbiased estimate

of MMD2
H (p, q) via the sum of two U-statistics and a sample average:

MMD2
u(X , Y ) =

1
m(m− 1)

m
∑

i=1

m
∑

j 6=i

k(x i, x j) +
1

n(n− 1)

m
∑

i=1

m
∑

j 6=i

k(yi, y j)

−
2

mn

m
∑

i=1

n
∑

j=1

k(x i, y j). (3.5)

As an unbiased estimate of MMD2
H (p, q), MMD2

u may be negative. A non-negative, but

biased, estimate can be obtained by replacing the U-statistics in Eq. (3.5) by V -statistics:

MMD2
b(X , Y ) =

1
m2

m
∑

i=1

m
∑

j=1

k(x i, x j) +
1
n2

m
∑

i=1

m
∑

j=1

k(yi, y j)−
2

mn

m
∑

i=1

n
∑

j=1

k(x i, y j). (3.6)

Both the unbiased and biased estimates could be computed in O(mn) time.

The asymptotic distribution of MMD2
u under the null hypotheses H0 : p = q is given

by the following theorem:

Theorem 3.2.1 (Theorem 12 of Gretton et al. (2012)). Denote the centered-kernel between

feature space mappings from which the mean embedding of p has been subtracted,

ek(x i, x j) :=



φ(x i)−µp,φ(x j)−µp

�

= k(x i, x j)−Ex∼p [k(x i, x)]−Ex∼p

�

k(x , x j)
�

+Ex ,x ′∼p

�

k(x , x ′)
�

.

Assume that ek(·, ·) is square-integrable and limm,n→∞
m

m+n = ρ ∈ (0,1). Then under H0,

MMD2
u converges in distribution according to

(m+ n)MMD2
u(X , Y )

D
→

1
ρ(ρ − 1)

∞
∑

`=1

λ`(χ
2
1` − 1)

2Universality requires that k(·, ·) is continuous, andH is dense in C(X ) w.r.t. the L∞-norm, where C(X )
denotes the space of bounded continuous functions on X .
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where {χ2
1`}
∞
`=1 is an infinite sequence of independent χ2 random variables with one degree

of freedom, and {λ`}∞`=1 are the eigenvalues of
∫

X

ek(x , x ′)ψ`(x)dp(x) = λ`ψ`(x
′).

In practice, to determine the critical value of the two-sample test, the (1 − α)-th

quantile of the null distribution can be estimated using approximations based on moment-

matching, or by bootstrapping on the aggregated data following the method of Arcones

and Gine (1992).

3.3 Stein Discrepancy and Goodness-of-Fit Tests

In the previous section, we studied two-sample tests for which we are given i.i.d.

observations {x i}mi=1 and {y j}nj=1 from two unknown distributions p and q, respectively,

and would like to test the hypotheses H0 : p = q vs. H1 : p 6= q. Another important class

of statistical tests are goodness-of-fit tests, which measure how well a model distribution

p(x) fits observed data {x i}ni=1. In other words, we assume that the model distribution p

is given, and we have samples {x i}ni=1 from an unknown data-generating distribution q.

The goal is still to test the hypotheses H0 : p = q vs. H1 : p 6= q, with H1 indicating that

the model does not provide a good description of the data.

As we discussed in Section 1.2, classical goodness-of-fit tests typically assume that

the model distribution p(x) is fully specified. In modern applications, however, p(x) is

often specified only up to an intractable normalization constant. Recently, a new line

of research (Gorham and Mackey, 2015; Oates et al., 2017; Chwialkowski et al., 2016;

Liu et al., 2016; Jitkrittum et al., 2017) has developed goodness-of-fit tests which work

directly with unnormalized model distributions. By combining Stein’s method (Stein,

1972, 1986) from probability theory with techniques from reproducing kernel Hilbert

spaces (cf. Section 3.1), one can obtain computationally tractable goodness-of-fit tests

based on the notion of kernelized Stein discrepancy (Liu et al., 2016; Chwialkowski et al.,

2016). In this section, we review these recent developments, which form the basis of

our investigation in Chapters 5 and 6.
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3.3.1 Stein’s Method

In probability theory, Stein’s method (Stein, 1972, 1986) is a sophisticated technique

for proving approximations to probability distributions and characterizing convergence

rates. In this section, we briefly review several elements of Stein’s method that are

central to the development in this dissertation. For details on this fast-growing topic, we

refer the reader to the many books and surveys available in the literature (Stein, 1986;

Diaconis and Holmes, 2004; Barbour and Chen, 2005; Chen et al., 2011; Ross, 2011;

Barbour and Chen, 2014; Chatterjee, 2014; Ley et al., 2017).

Stein operator. Let p be a probability distribution on a measurable space X . To

apply Stein’s method, one begins by identifying an operator Ap, which acts on real- or

vector-valued functions f : X → Rd in some function space F , that characterizes the

distribution p in the sense that

Ex∼q

�

Ap f (x)
�

= 0, ∀ f ∈ F if and only if p = q. (3.7)

In this case, the operator A is called the Stein operator, and we have the Stein identity:

Ex∼p

�

Ap f (x)
�

= 0, ∀ f ∈ F . (3.8)

As an important example, consider a continuously differentiable (smooth) density

p(x ) supported on X d ⊆ Rd . The score function of p is given by

sp(x ) :=∇ log p(x ) =
∇p(x )
p(x )

, (3.9)

where ∇ takes the gradient with respect to x . Define the Stein operator

Ap f (x ) := sp(x ) f (x ) +∇ f (x ). (3.10)

For real-valued smooth functions f : X → R satisfying a boundary condition,3 it is

easy to verify (using integration-by-parts) that the Stein identity of Eq. (3.8) holds. For

3Specifically,
∮

∂X p(x ) f (x )dS = 0 when X is bounded or limr→∞
∮

Br
p(x ) f (x )dS = 0 when X = Rd ,

where Br denotes the unit-ball of radius r centered at the origin.
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instance, one could take p(x) to be the standard (one-dimensional) Gaussian density,

with score function sp(x) = −x , and obtain

Ap f (x) = f ′(x)− x f (x),

which recovers the operator Stein (1972) introduced to prove normal approximations.

The fact that if Z ∼N (0,1), then E [Z f (Z)] = E [ f ′(Z)] for all absolutely continuous

functions f : R→ R with E [ f (Z)]<∞, is also known as Stein’s lemma.

Generator method. The generator method of Barbour (1988) provides a general ap-

proach for constructing Stein operators. Let {X t : t ≥ 0} denote a Markov process on X

with stationary distribution p. The infinitesimal generator

A f (x) := lim
t→0

E [ f (X t) |X0 = x]− f (x)
t

satisfies Ex∼p [A f (x)] = 0 under mild conditions and thus gives rise to a Stein operator.

By applying the generator method to the overdamped Langevin diffusion, Gorham and

Mackey (2015) obtained the Langevin Stein operator (Gorham et al., 2016) for vector-

valued functions f : X ⊆ Rd → Rd ,

Ap f (x ) := f (x )Tsp(x ) +∇ · f (x ) (3.11)

where sp(x ) is the score function of Eq. (3.9), and ∇· is the divergence operator. We

note that Eq. (3.11) also appeared in Oates et al. (2017). For any smooth function

f : X ⊆ Rd → Rd satisfying the boundary condition

f (x)Tn(x ) = 0, ∀x ∈ ∂X , (3.12)

where n(x) represents the outward unit normal vector to the boundary ∂X , it follows

from integration-by-parts that the Stein identity holds:

Ex∼p

�

Ap f (x )
�

= 0. (3.13)



35

3.3.2 Stein Discrepancy

Assume that we have identified a Stein operator Ap which characterizes the proba-

bility distribution p on X . By (3.7), when Ap is applied to any test function f ∈ F , the

resulting function Ap f has zero-expectation under p. Moreover, the expectation of Ap f

under any other distribution q 6= p should be non-zero for at least some function z f

in F . This motivates taking

DF (q ‖ p) := sup
f ∈F
Ex∼q

�

Ap f (x )
�

(3.14)

as a discrepancy measure between the distributions q and p, called the Stein discrepancy

(Gorham and Mackey, 2015). Different choices of the function class F have been

examined in the literature: Gorham and Mackey (2015) considered functions in theW2,∞

Sobolev space, while Chwialkowski et al. (2016); Liu et al. (2016); Oates et al. (2017)

proposed taking F to be the unit-ball of a reproducing kernel Hilbert space (RKHS;

cf. Section 3.1). The advantage of the latter approach is that the resulting discrepancy

can be computed in closed-form, as we shall see next.

For the remainder of this section, let p(x ) denote a continuously differentiable

(smooth) density supported on X d ⊆ Rd , and Ap the Langevin Stein operator defined

in Eq. (3.11). For our purposes, it is important to note that the score function sp(x )

(cf. Eq. (3.9)), and thus the Stein operator Ap, can be evaluated even if p is only known

up to a normalization constant: if p(x ) = p̃(x )/Z , then sp(x ) = ∇p(x )/p(x ) = ∇p̃(x )/p̃(x )

does not depend on Z .

LetH be an RKHS of functions f : X ⊆ Rd → R with kernel k(·, ·), and consider the

vector-valued RKHSH d of functions f : X → Rd . In Eq. (3.14), setting F = { f ∈H d :

‖ f ‖H d ≤ 1} to be the unit-ball ofH d , we obtain the kernelized Stein discrepancy (KSD)

between q and p (Chwialkowski et al., 2016; Liu et al., 2016):

D(q ‖ p) := sup
f∈H ,‖ f ‖H d≤1

Ex∼q

�

Ap f (x )
�

(3.15)

Using the reproducing property, it can be shown that (Liu et al., 2016):

D2(q ‖ p) = Ex ,x ′∼q

�

κp(x , x ′)
�

, (3.16)
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where κp(·, ·) is a “Steinalized” kernel obtained by successively applying the Stein

operator Ap to each argument of k(·, ·):

κp(x , x ′) = sp(x )
Tk(x , x ′) sp(x

′) + sp(x )
T∇x ′k(x , x ′) +∇x k(x , x ′)Tsp(x

′)

+∇T
x∇x ′k(x , x ′). (3.17)

In addition, Liu et al. (2016) showed that if the kernel k(·, ·) is integrally strictly positive-

definite (Stewart, 1976), that is,
∫

g(x ) k(x , x ′) g(x ′)dx dx ′ > 0

for any function g ∈ L2(X ), and if ‖q(x ) (sp(x )− sq(x ))‖2
2 <∞, then

D(q ‖ p) = 0 if and only if p = q.

In practice, one could take k(·, ·) to be the Gaussian RBF kernel:

k(x , x ′) = exp

�

−
‖x − x ′‖2

2

2σ2

�

(3.18)

which is integrally strictly positive-definite. Gorham and Mackey (2017) further recom-

mends the inverse multiquadric (IMQ) kernel

k(x , x ′) =
�

α+ ‖x − x ′‖2
2

�β

for α > 0 and β ∈ (−1,0), which yields a KSD that provably determines weak conver-

gence of a sequence of probability measures to its target.

Goodness-of-Fit Testing via KSD

Recall that in goodness-of-fit testing, we are given an unnormalized model distri-

bution p, and observe i.i.d. samples {x i}ni=1 ⊆ X from an unknown data-generating

distribution q. We wish to test the hypotheses H0 : p = q vs. H1 : p 6= q.

We can obtain a test statistic by estimating the squared population KSD S (q ‖ p) :=

D2(q ‖ p) via an unbiased U-statistic:

bS (q ‖ p) =
1

n(n− 1)

n
∑

i=1

n
∑

j 6=i

κp(x i, x j) ,
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which provides a minimum-variance unbiased estimator (Hoeffding, 1948), although

bS (q ‖ p) may be negative. The asymptotic behavior of bS (q ‖ p) is characterized in the

following theorem:

Theorem 3.3.1 (Theorem 4.1 of Liu et al. (2016)). Let k(x , x ′) be a integrally strictly

positive definite kernel on X d , and assume that Ex ,x ′∼q

�

κp(x , x ′)2
�

<∞. We have the

following two cases:

(i) If q 6= p, then bS (q ‖ p) is asymptotically normal:

p
n
�

bS (q ‖ p)− S (q ‖ p)
� D
→N (0,σ2),

where σ2 = Varx∼q(Ex ′∼q

�

κp(x , x ′)
�

)> 0.

(ii) If q = p, then σ2 = 0, and the U-statistic is degenerate:

nbS (q ‖ p)
D
→

∞
∑

j=1

c j(Z
2
j − 1),

where {Z j}
iid∼ N (0,1) and {c j} are the eigenvalues of the kernel κp(·, ·) under q:

∫

κp(x , x ′)φ j(x )q(x )dx = c jφ j(x
′).

In practice, to determine the critical value of the test, one can adopt the generalized

bootstrap method for degenerate U-statistics (Arcones and Gine, 1992; Huskova and

Janssen, 1993) approximate the null distribution of the test statistic.4 Specifically,

to obtain a bootstrap sample, we draw random multinomial weights w1, . . . , wn ∼

Mult(n; 1/n, . . . , 1/n), set ewi = (wi − 1)/n, and compute

bS∗b(q ‖ p) =
n
∑

i=1

n
∑

j 6=i

ewi ew jκp(x i, x j). (3.19)

Upon repeating this procedure m times, we calculate the critical value of the test by

taking the (1−α)-th quantile of the bootstrapped statistics {bS∗b}
m
b=1.

4An alternative wild bootstrap (Shao, 2010) procedure was used in Chwialkowski et al. (2016), which
allows the observations {x i}ni=1 to be weakly dependent.
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Connections to Integral Probability Metrics

We conclude this section by discussing the connections between the (kernelized)

Stein discrepancy and integral probability metrics (IPMs) such as the maximum mean

discrepancy (MMD) discussed in Section 3.2.

By Eq. (3.8), Ex∼p

�

Ap f (x )
�

= 0 for all f ∈ F . Thus, the Stein discrepancy defined

in Eq. (3.14) can be rewritten as

DF (q ‖ p) := sup
f ∈F
Ex∼q

�

Ap f (x )
�

= sup
f ∈F

�

�Ex∼q

�

Ap f (x )
�

−Ex∼p

�

Ap f (x )
� �

� ,

which resembles the form of an IPM γFp
(q, p) (cf. Eq. (3.2)) with Fp := {Ap f : f ∈ F}.

However, this dependency ofFp on p renders the Stein discrepancy asymmetric, resulting

in a crucial distinction from IPMs such as MMD (cf. Eq. (3.3)), which are by definition

symmetric in their arguments p and q.

For the kernelized Stein discrepancy of Eq. (3.15), Liu et al. (2016) observed that

KSD can be viewed as a special case of MMD under the “Steinalized” kernel κp(·, ·) of

Eq. (3.17). Specifically, letHp denote the RKHS associated with kernel κp. By Eq. (3.4),

MMD2
Hp
(p, q) = Ex ,x ′∼p

�

κp(x , x ′)
�

+Ey,y ′∼q

�

κp(y, y ′)
�

− 2Ex∼p, y∼q

�

κp(x , y)
�

= Ey,y ′∼q

�

κp(y, y ′)
�

= D2(q ‖ p) ,

where the second equality makes use of the observation that

Ex∼p

�

κp(x , x ′)
�

= Ex ′∼p

�

κp(x , x ′)
�

= 0,

and the last equality follows from Eq. (3.16). Again, note that becauseHp depends on p,

KSD is asymmetric in its arguments, whereas the MMD of Eq. (3.3) is symmetric.

3.4 Summary

In this chapter, we have reviewed the basic definitions and properties of reproducing

kernel Hilbert spaces, examined a kernel two-sample test based on the maximum mean

discrepancy, and discussed the recent developments in applying Stein’s method to

goodness-of-fit testing.



39

The notion of Stein discrepancy provides a promising framework for establishing

goodness-of-fit tests for unnormalized distributions, yet due to their reliance on the

Langevin Stein operator of Eq. (3.11), the (kernelized) Stein discrepancy and goodness-

of-fit test discussed in Section 3.3.2 apply exclusively to continuous distributions with

smooth density functions. In Chapter 5, we will extend these notions by constructing

a Stein operator for discrete spaces; we will also provide a characterization of Stein

operators that encompasses both continuous and discrete distributions. In Chapter 6,

we will discover that the notions of Stein operators and (kernelized) Stein discrepancy

could be further generalized to point processes (cf. Section 2.2), which form infinite-

dimensional distributions over sets containing an arbitrary number of points, eventually

giving rise to a nonparametric goodness-of-fit test for general point processes.

We conclude this chapter by mentioning a number of kernel-based hypothesis tests

that have been omitted in our discussions. Examples include fast two-sample tests using

characteristic functions (Chwialkowski et al., 2015; Jitkrittum et al., 2016), tests for

(conditional) independence (Gretton et al., 2008; Zhang et al., 2011, 2018), and tests

of relative goodness-of-fit (Bounliphone et al., 2016; Jitkrittum et al., 2018). For Stein

discrepancy tests, in addition to the kernelized Stein discrepancy test of Chwialkowski

et al. (2016); Liu et al. (2016) we discussed, Jitkrittum et al. (2017) further proposed a

linear-time adaptive test based on a finite-set Stein discrepancy statistic.
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4. DECOUPLING HOMOPHILY AND RECIPROCITY WITH LATENT SPACE

NETWORK MODELS

Networks form useful representations of data arising in various physical and social do-

mains. In this chapter, we consider dynamic networks such as communication networks

in which links connecting pairs of nodes appear over continuous time. We adopt a point

process-based approach, and study latent space models which embed the nodes into

Euclidean space. We propose models to capture two different aspects of dynamic net-

work data: (i) communication occurs at a higher rate between individuals with similar

features (i.e., homophily), and (ii) individuals tend to reciprocate communications from

other nodes, but in a manner that varies across individuals. Our framework marries

ideas from point process models, including Poisson and Hawkes processes, with ideas

from latent space models of static networks. We evaluate our models over a range of

tasks on real-world datasets and show that a dual latent space model, which accounts

for heterogeneity in both reciprocity and homophily, significantly improves performance

for both static and dynamic link prediction.

4.1 Introduction

Latent space models are a valuable tool for modeling social network data. By

incorporating an embedding over nodes (e.g., people), such models can account for

unobserved preferences, interests, attitudes, etc. Typically, the likelihood of edges

(interactions) between two nodes depends on their distance in the embedding space:

the closer they are, the more likely they are to be linked. This reflects the notion of

homophily (McPherson et al., 2001) that has been observed in many social domains:

similar entities are more likely to form a tie than two randomly selected entities. As

such, including latent spaces in models of static social networks has often improved
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descriptive and predictive accuracy with respect to modeling the link structure (e.g.,

Hoff et al. 2002).

In this chapter, we focus on modeling the structure of dynamic networks, where

interactions occur among entities over time. Dynamic networks are more complex than

static networks because the temporal interactions can be varied and bursty, reflecting new,

repeated, or correlated events. Much of the recent work in modeling temporal networks

has typically represented the input networks as a sequence of snapshots taken at discrete

time-points and often used Markov assumptions to restrict temporal correlations to the

previous time-step.

It is much more natural to model the network dynamics using point processes,

particularly when the interactions indicate events that occur in continuous time (e.g.,

each pair of nodes has a sequence of interactions over time). Previous work have applied

various point processes such as Poisson processes (e.g., Iwata et al. 2013), renewal

processes (e.g., Min et al. 2011), and Hawkes processes (e.g., Blundell et al. 2012)

to modeling network data. Hawkes processes in particular have attracted a great

deal of recent interest due to their capability to capture reciprocity in interaction data.

Reciprocity refers to the act of responding to a particular action with the same type of

action (Ekeh, 1974). For example, in social network interactions, if one person sends

another a message, the likelihood that the other person will respond and send a message

back in the near future increases. However, recent work has focused more on modeling

reciprocity with specific individuals (or clusters of people) rather than modeling the

dependencies among individuals that may influence reciprocity.

In this chapter, we bring the strength of latent space models for static networks to

point process models for dynamic networks. We make the key observation that the latent

dimensions of users which influence link formation may be different from the latent

dimensions of users which influence reciprocity. We refer to the former as the user’s

homophily latent space—dimensions which include preferences, interests, attitudes, etc.

We refer to the latter as the user’s reciprocal latent space—dimensions which include

prosociality, agreeableness, level of self-monitoring, adherence to social norms, etc. Since
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the set of temporal interactions in dynamic networks consists of various types of events

(some new, some instigated by other events), it is unlikely that all such interactions are

governed by the same process. We conjecture that different latent space embeddings

will help models to distinguish bursty events due to reciprocation from other types of

interactions in a conversation.

To explore these issues, we propose a set of latent space point process models

including a Poisson process-based model and multiple Hawkes process-based models

with different latent space embeddings. We evaluate the utility of the various models

both quantitatively and qualitatively through a set of carefully designed experiments on

real-world datasets. Our results show that a dual latent space Hawkes process model,

which contains latent spaces for both homophily and reciprocity, are more accurate for

both dynamic and static link prediction. Moreover, the embeddings themselves can

be used for subjective evaluation and provide insights on how various pairs of entities

interact in the network.

4.2 Problem Definition

We consider network data with the following properties:

• There exists a fixed set of vertices V = {1, . . . , n} throughout an observation time

period [0, T ).

• For each ordered pair of vertices (u, v), we observe a set of event-times, corre-

sponding to a sequence of directed links or messages from u to v. We write the

overall observed data as {(u, v,Huv)}u,v∈V , where Huv := {tuv
i }

nuv
i=1 records the set of

all time-points at which u sent v a message. We write nuv ≥ 0 for the total number

of messages from u to v.

• A node never sends a message to itself; and the granularity of measurements is

fine enough that the probability of two simultaneous events is zero.

These properties naturally motivate a point process-based approach, and we model

the arrival times {tuv
i } of each link from node u to v as realizations of a point process
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Nuv(t), t ∈ [0, T). The dynamic network evolving over time consists of n2 − n point

processes Nuv(t), which if treated as independent, involves O(n2) parameters. Such an

independence assumption however ignores important structure in the dynamics of the

point processes. We assume two sources of dependency:

Static dependencies due to homophily, where baseline event rates vary between pairs

of nodes because of shared features. Among other things, this accounts for the fact

that the two processes Nuv(t) and Nuw(t) have a node u in common and therefore will

share statistical properties. In general, homophily reflects how similarity in node-level

properties (such as preferences, interests, and attitudes) affects link formation.

Dynamic interactions due to reciprocity, where activity between pairs of nodes is

a function of previous history. At its simplest, this might account for reciprocity in

communications between a pair of individuals. More generally, this accounts for how

social influence, charisma, and the user-role affects the dynamics in a sequence of

interactions. The nature of this reciprocation might depend on shared features between

two nodes different from the features relevant to homophily.

Inspired by the work of Hoff et al. (2002), we model these phenomena by assigning

to each node v ∈ V a set of latent features. For the first effect, we write its feature vector

as zv ∈ Rd , and assume that the intensity function λuv(t) underlying the process Nuv(t)

depends on the Euclidean distance between ‖zu− zv‖2. To account for the second effect,

we cannot assume that λuv(t) is fixed in time given these latent features, and instead

must allow it to depend on previous network activity. This dependency will again be

described by latent features associated with each node, but a different set which we

write as x v ∈ Rd .

While we do not explicitly assume the availability of any observed features for each

node, they can be directly incorporated in our models by augmenting the x - and z-

vectors. We also do not assume any additional information (such as message text or

topic) for each link apart from its time-stamp, but we note that such information can

be utilized by augmenting the hierarchical generative models with another level, as

demonstrated in e.g., He et al. (2015); Tan et al. (2016).
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4.3 Latent Space Point Process Models of Dynamic Networks

In this section we present a series of latent space point process models for dynamic

network data. We begin with the most straightforward model that only captures ho-

mophily, and proceed through a sequence of models of increasing complexity.

4.3.1 Poisson Latent Space Model

Perhaps the simplest latent space network point process model treats messages from

a node u to v as a time-homogeneous Poisson process whose intensity is a function of

the Euclidean distance between them in a latent feature space. In equations:

Poisson-rate latent space (PLS) model

zv ∼N (0,σ2 Id×d) ∀v ∈ V

λuv(t) = γ e−‖zu−zv‖22 ∀u 6= v

Nuv(·)∼ PoissonProcess(λuv(·)) ∀u 6= v

Here, we have placed independent Gaussian priors on the latent features for each

node, resulting in a collection of correlated doubly-stochastic Poisson processes. The

parameter γ can be assigned a prior if we have node-level or edge-level covariates

available, but for identifiability we tie the parameter across all pairs of nodes.

4.3.2 Hawkes Latent Space Models

The remaining models augment the latent-space representation with additional

non-Poissonian dynamics that capture reciprocity in communications across a network.
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Hawkes Process Model

At its simplest, a node v is much more likely to send node u a message if u had

just sent v a message earlier. To incorporate such reciprocity, the intensity function

λuv(t) governing the Nuv(t) process can be modeled to depend on the events history of

the reciprocal process Nvu(t). Hawkes processes provide a simple mathematical tool to

achieve this.

Specifically, for nodes u, v ∈ V, u 6= v, we model the pair of processes Nuv(t) and

Nvu(t), as a bivariate Hawkes process, with intensity depending on the event histories,

Huv := {tuv
i }

nuv
i=1 and Hvu := {t vu

i }
nvu
i=1 :

λuv(t|Huv,Hvu) = γuv +
∑

k: t vu
k <t

φuv(t − t vu
k ) . (4.1)

We have removed the self-excitation component since we do not consider self-loops in the

network. Similar approaches have appeared in previous work (e.g., Blundell et al. 2012),

but we will comment on these in Section 4.5. While it is standard to parametrize the

triggering function φuv(·) as an exponential kernel with time scale τ, we found that

learning τ suffered from identifiability issues. Instead, we model φuv(·) as a weighted

combination of basis kernels:

φuv(t) =
B
∑

b=1

ξuv
b φb(t) (4.2)

where ξuv
b is the weight of the kernel φb. We consider two possible forms for the

basis kernel φb: (i) exponential kernels with length-scale τ, φb(t) = e−t/τ; and (ii)

locally periodic kernels with period p and length-scale τ, φb(t) = e−t/τ sin2
�

πt
τ

�

. In our

experiments, we utilize kernels with time-scales of an hour, a day, and a week, which

are interpretable and realistic for our applications.

We summarize the Hawkes process model below:
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Hawkes process (HP) model

λuv(t) = γ+
∑

k: t vu
k <t

B
∑

b=1

ξbφb(t − t vu
k ) ∀u 6= v

Nuv(·)∼ HawkesProcess(λuv(·)) ∀u 6= v

We have again tied the parameters γuv ≡ γ and ξuv
b ≡ ξb across all node-pairs to

avoid identifiability issues.

Hawkes Base-Rate Latent Space Model

The most straightforward way of modeling both homophily and reciprocity is to

add the Hawkes triggering function term to the intensity functions of the previous PLS

model:

Hawkes base-rate latent space (BLS) model

zv ∼N (0,σ2 Id×d) ∀v ∈ V

λuv(t) = γ e−‖zu−zv‖22 +
∑

k: t vu
k <t

B
∑

b=1

ξbφb(t − t vu
k ) ∀u 6= v

Nuv(·)∼ HawkesProcess(λuv(·)) ∀u 6= v

Here, and with the Poisson-rate latent space model, we shall refer to the z-space as

the homophily latent space, with the distance between zu and zv reflecting how dissimilar

u and v are, regardless of their communication history. This distance sets a baseline rate

of communication between the two nodes—i.e., the rate at which one node initiates

communication with the other. The Hawkes component captures the fact that having

initiated a new communication, subsequent messages in that thread will follow different

dynamics.
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Hawkes Reciprocal Latent Space Model

The previous model assumes heterogeneity only in the rate at which different node-

pairs initiate communications, and the Hawkes dynamics are themselves assumed to

be homogeneous across all pairs. Our next model modifies Eq. (4.1) to reverse this

assumption, associating latent features with reciprocity rather than the base-rate:

Hawkes reciprocal latent space (RLS) model

x v ∼N (0,σ2 Id×d) ∀v ∈ V

λuv(t) = γ+
∑

k: t vu
k <t

B
∑

b=1

ξb e−‖x u−x v‖22 φb(t − t vu
k ) ∀u 6= v

Nuv(·)∼ HawkesProcess(λuv(·)) ∀u 6= v

We shall refer to the x -space as the reciprocal latent space, since it modulates the

magnitude of excitation triggered by each message between the pair of nodes.

Hawkes Dual Latent Space Model

As a final model, we combine the ideas of homophily and reciprocal latent spaces into

a single model. Our final Hawkes process latent space model accounts for heterogeneity

both in how two users initiate communications, as well as in the dynamics within a

particular exchange. Using a mixture of exponential and periodic kernels with various

length-scales, we can investigate whether a message sent from node u to v is more

likely to trigger an immediate response, a response sometime over a week, or whether

communications have a periodic nature.
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Hawkes dual latent space (DLS) model

zv ∼N (0,σ2 Id×d) ∀v ∈ V

µv ∼N (0,σ2
µ

Id×d) ∀v ∈ V

ε(b)v ∼N (0,σ2
ε
Id×d) ∀v ∈ V, b = 1, . . . , B

x (b)v ∼ µv + ε
(b)
v ∀v ∈ V, b = 1, . . . , B

λuv(t) = γ e−‖zu−zv‖22 +
∑

k: t vu
k <t

B
∑

b=1

β e−‖x
(b)
u −x (b)v ‖

2
2 φb(t − t vu

k ) ∀u 6= v

Nuv(·)∼ HawkesProcess(λuv(·)) ∀u 6= v

Notice that we have also placed a hierarchical prior on the B reciprocal latent spaces

to enforce consistency between the learned latent features across different kernels.

4.3.3 Inference

For all the models we have discussed, we perform maximum a posteriori (MAP)

inference over the unknown parameters. Recall that we place independent standard

Gaussian priors on the latent space vectors {zv}v∈V and {x v}v∈V . Additionally, we place

Gamma priors on the base rate γ and triggering magnitudes {ξb}Bb=1 and β . Inference is

tractable since it follows from Eq. (2.4) that the log-likelihood of all communications

observed over the entire network
�

(u, v, {tuv
i }

nuv
i=1)

	

u,v∈V
can be written as

logL=
n
∑

u,v=1
u6=v

¨

−Λuv(0, T ) +
nuv
∑

i=1

logλuv(t
uv
i )

«

(4.3)

where the intensities λuv(t) are specified for each model, and the cumulative intensities

can be found in closed-form by noticing that for the basis kernel φb, we have
∫ T

0

∑

k: t vu
k <t

φb(t − t vu
k )dt =

nvu
∑

k=1

�

Φb(T − t vu
k )−Φb(0)

�

where Φb(t) :=
∫ t

0
φb(s)ds. In fact, the right-hand side, as well as the quantities

�∑

k: t vu
k <tuv

i
φb(tuv

i − t vu
k )
	nuv

i=1
, are data statistics that can be pre-computed and cached for
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each pair of nodes u, v ∈ V and kernelφb. Furthermore, the gradients of the log-posterior

function are also available in closed form, and the optimization can be carried out using

L-BFGS-B (Byrd et al., 1995). Detailed calculations are provided in Appendix A.1.

We conclude this section with a brief summary of the complexity of each proposed

model. Assuming that the number of nodes n and the dimensionality of the latent

spaces d are both much larger than the number of basis-kernels B, the HP model has

O(B) parameters, while the PLS, BLS, and RLS models have O(n · d) parameters, and

the DLS model has O(n · d · B) parameters.

4.4 Empirical Evaluation

In this section, we evaluate the proposed models of Section 4.3, both quantitatively

and qualitatively, on three real-world datasets.1 For the quantitative component, we

evaluate model performance across multiple tasks, including predictive log-likelihood,

dynamic link prediction, and (static) link prediction using the learned embeddings. For

the qualitative component, we visualize the learned network embeddings, and demon-

strate how the reciprocal latent spaces in the DLS model can be used to characterize

different reciprocation patterns.

Dataset description. We perform experiments on three real-world communication

networks:

ENRON This is the “core” network of the Enron email dataset (Klimmt and Yang, 2004)

consisting of communications among 155 Enron executives. Each node represents

an employee, while each link corresponds to an email message. We consider the

period between January 2000 and April 2002, during which the vast majority of

communications occurred. The resulting dataset contains 9,646 email messages

spanning a period of 453 days.

1Code for the experiments is available at https://github.com/jiaseny/lspp .

https://github.com/jiaseny/lspp
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EMAIL This dataset contains email communications within Purdue University from July

2011 to February 2012. Each node in the network represents an email address,

while each link corresponds to an email message. We cleaned up this dataset

by filtering out mailing-lists, and extracted the one hundred nodes with largest

total degree. The resulting network consists of 34,438 email messages spanning a

period of 237 days.

FACEBOOK This dataset contains Facebook wall messages among students of Purdue

University from March 2007 to March 2008. Each node in the network represents

an anonymized user account, and each link corresponds to a wall message. To

focus on the “core” part of the network, we take a subset of the one hundred

accounts with largest total degree. The resulting network consists of 18,865 wall

messages posted over a period of 385 days.

Experiment setup. For each network dataset, we sort the messages according to their

timestamps, and split the dataset into a training set consisting of the first 70% messages,

and a test set consisting of the remaining 30% messages. All models are trained on the

training set, and all evaluation tasks are performed on the test set.

For all Hawkes process-based models (cf.Section 4.3.2), we utilize B = 4 basis

kernels—three exponential kernels with length-scales one hour, one day, and one week,

respectively: φ1(t) = e−
t

1/24 , φ2(t) = e−t , φ3(t) = e−t/7; and a locally periodic kernel

with both period and length-scale set to one week: φ4(t) = e−t/7 sin2
�

πt
7

�

(all units are

in days). For all latent space models, we set the dimensionality of the latent vectors to

be d = 100.2 For the BLS, RLS, and DLS models, we set σ2 = σ2
µ
= σ2

ε
= 1. For MAP

inference, we perform optimization using the L-BFGS-B solver in the SciPy package with

analytical gradients derived for each model.

2Since the DLS model contains one homophily latent space and four reciprocal latent spaces, one could
argue that the latent spaces in the other models should be (5 d)-dimensional. We experimented with
setting d = 500 for the other models, and obtained similar results to the d = 100 setting.
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4.4.1 Predictive Log-Likelihood

We learn the parameters of all models on the training set, and compute their predictive

log-likelihood values on the test-set. From Table 4.1, we observe that the Hawkes process-

based models significantly outperform the Poisson-rate latent space model (PLS), while

the test log-likelihood values improve as we move from the base-rate latent space (BLS)

and reciprocal latent space (RLS) models to the dual latent space (DLS) model. The

DLS model also comfortably outperforms the Hawkes process (HP) model on two of

the three datasets. For the Enron dataset, the simple HP model slightly outperforms

the other models: we believe this is because the dataset is relatively unstructured, with

pairwise reciprocity dominating most exchanges. Also notice that BLS outperforms PLS,

which indicates that going beyond homogeneous Poisson processes to model reciprocity

in the network indeed yields better predictive performance.

Table 4.1.: Predictive log-likelihood.

Model ENRON EMAIL FACEBOOK

HP -16226.155 -2129.940 -7871.895

PLS -37803.978 -112684.130 -66742.379

BLS -21779.686 -9850.932 -12119.869

RLS -16565.449 -2113.254 -7867.870

DLS -16422.946 185.264 -6421.609

4.4.2 Dynamic Link Prediction

We further gauge the performance of the learned models in a temporal link prediction

task. Specifically, we randomly sample 100 time-points t i during the test period, and

ask every model to predict the probability that a link will appear between each pair of

nodes in the [t i, t i +δ) time window (we set δ to be two weeks). Note that all models
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are equipped with parameters estimated from the training set, and for Hawkes process

models we also condition on all the historical training and test events up to time t i. For

each time-point t i, we then compute the area under the ROC curve (AUC) measured

across all pairs of nodes according to the predicted probabilities given by each model.3

Finally, we report the mean and standard deviations of the AUC scores across all 100

randomly sampled testing time-points in Table 4.2.

Table 4.2.: Dynamic link prediction AUC scores.

Model ENRON EMAIL FACEBOOK

HP 0.750 (0.070) 0.881 (0.088) 0.931 (0.095)

PLS 0.681 (0.041) 0.843 (0.087) 0.874 (0.078)

BLS 0.738 (0.065) 0.868 (0.095) 0.927 (0.096)

RLS 0.750 (0.070) 0.881 (0.088) 0.931 (0.095)

DLS 0.928 (0.018) 0.971 (0.006) 0.979 (0.008)

4.4.3 Network Embedding

As discussed in Section 2.1, a major motivation for developing latent-space network

models is that the learned latent feature vectors for each node effectively provide a

mapping that embeds the observed network into Euclidean space. To evaluate the quality

of the learned embeddings for each latent space model, we perform link prediction

on the test set by collapsing the messages into a single undirected and unweighted

graph, where there exists an edge between two nodes if at least one communication

exists between them in the test set. Given the learned latent feature vectors {zv}v∈V (or

{x (b)v }v∈V for reciprocal latent spaces), we compute the predicted probability that an

3The predicted probability of node u sending v at least one message during the time interval [t, t +δ)
can be computed as 1− exp

�

−
∫ t+δ

t λuv(s)ds
	

.



53

edge exists in the test graph via puv ∝ e−‖zu−zv‖22 , ∀u, v ∈ V , and then measure the link

prediction AUC scores for all pairs of nodes.

In addition to the latent space models proposed in this work, we also compare with

two popular approaches for embedding static networks:

Spectral Laplacian eigenmaps are widely used in spectral clustering (see e.g., von

Luxburg, 2007). Given the adjacency matrix A of the training network, we com-

pute the d eigenvectors corresponding to the smallest eigenvalues of the symmetric

normalized Laplacian Lsym := I−D−1/2AD−1/2, where D is a diagonal matrix of node

degrees.

node2vec This is a state-of-the-art deep learning approach to learning continuous feature

representations for networks (Grover and Leskovec, 2016).4

For both Laplacian eigenmaps and node2vec, we form an adjacency matrix of the training

network A by collapsing the messages in the training set into an undirected graph with

each edge weighted by the number of communications between the corresponding pair

of nodes.5 We set d = 100 for fair comparison.

Table 4.3 shows the obtained AUC scores, and Figure 4.1 plots the corresponding

ROC curves. Shown alongside the ROC curves are two-dimensional projections (obtained

using PCA) of the 100-dimensional latent spaces learned using each method. We observe

that DLS performs on par with node2vec, and outperforms all other approaches in terms

of AUC score.6

Homophily and reciprocal latent spaces. For the DLS model, we found that the

learned homophily latent spaces {zv}v∈V always perform much better than the reciprocal

4We utilize the publicly available implementation at http://snap.stanford.edu/node2vec/ .
5For both Laplacian eigenmaps and node2vec, we have also experimented with treating the adjacency
matrix A as binary (unweighted), but both methods exhibit degraded performance.
5For the DLS model, the homophily latent space is used.
6Notice that the current experiment setup does not yield standard errors for the AUC scores, since there
is only one training/test set split. To investigate the statistical significance of the results, we conduct
a further experiment which shows that while DLS significantly outperforms node2vec on ENRON, their
performance are comparable on EMAIL and FACEBOOK. See Appendix A.2.1 for details.

http://snap.stanford.edu/node2vec/
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Table 4.3.: Static link prediction AUC scores.

Model ENRON EMAIL FACEBOOK

PLS 0.512 0.483 0.505

BLS 0.512 0.483 0.505

RLS 0.601 0.295 0.445

DLS 0.906 0.958 0.947

Spectral 0.687 0.428 0.452

node2vec 0.829 0.958 0.956

latent spaces
��

x (b)v

	

v∈V

	B

b=1
under the static link prediction setup, as shown in the

ROC curves for DLS-z and DLS-x (1) in Figure 4.1.7 Moreover, simply augmenting the

homophily latent space with the reciprocal latent spaces actually leads to degraded

performance in link prediction AUC. However, notice that the BLS model actually corre-

sponds to a DLS model where we have removed the reciprocal latent spaces, and the

BLS results show that in that case the learned homophily latent space performs quite

poorly in link prediction as well. This indicates that the reciprocal latent spaces may

have a denoising effect—i.e., that it “explains away” communications primarily due to

reciprocity such that the remaining communications arising from intensities with low

reciprocal component has to be due to the fact that the pair of nodes are inherently

similar in some way, which is modeled by the homophily latent features.

We further visualize the estimated homophily and reciprocal latent spaces of the

DLS model by computing the pair-wise similarities e−‖zu−zv‖22 for every pair of nodes

u, v ∈ V , and then plotting a heat-map of the inferred similarity matrices. For the ENRON

dataset, Figure 4.2 shows the heat-maps (colors on log-scale) for both the homophily

latent space and the reciprocal latent space corresponding to an hourly exponential

7The other reciprocal latent spaces exhibit similar performance, and we omit them from the plots to
reduce clutter.
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kernel (φ1).8 For each similarity matrix, we performed hierarchical clustering on the

rows to obtain a node-ordering and accordingly permuted the rows and columns of

the matrix simultaneously. Notice that the similarity matrices exhibit distinct clustering

block-structures, indicating that the user-interaction patterns are quite different across

the homophily and reciprocal latent spaces.

4.4.4 Exploring Reciprocation Patterns

While the reciprocal latent spaces in the DLS model may not be directly useful in

static link prediction, they do offer a unique tool for examining the varying reciprocation

patterns exhibited across different triggering kernels. Specifically, for each pair of nodes

u and v, we can compute their relative similarities in the b-th kernel via

p(b)uv :=
e−‖x

(b)
u −x (b)v ‖

2
2

∑B
h=1 e−‖x

(h)
u −x (h)v ‖22

, b = 1, . . . , B.

This allows us to embed each pair of nodes onto a probability simplex where each pair

u, v ∈ V is represented by a point
�

p(1)uv , . . . , p(B)uv

�T
. Note that this simplicial embedding

is of a different nature than the latent spaces themselves—if two points are nearby on

this simplex, it indicates that the two pairs of nodes exhibit similar relative behavior

across the chosen kernels, regardless of the absolute intensities of their communications.

In Figure 4.3, we selected two nodes in the ENRON network, and for each node v

we plot the simplicial embeddings of each pair (v, u), ∀u ∈ V .9 Figure 4.3 also plots

node v’s total outgoing intensity λv(t) :=
∑

w∈V λvw(t) as well as histograms showing

the distribution of the Euclidean distances between v and the remaining nodes in the

network. We observe that the two employees exhibit different reciprocation patterns

with other employees in the corporation in terms of their active triggering kernels. For

instance, the employee shown on the left appears to reciprocate with other employees

in much of a similar manner since the points are more tightly concentrated, while the

8The complete set of heat-maps for the remaining reciprocal latent spaces as well as those for EMAIL and
FACEBOOK are provided in the supplementary material.
9For visualization, we have collapsed the kernels φ3 and φ4 onto the same axis since they both have
length-scale one week.
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one on the right exhibits much more variability. Also notice that different reciprocating

kernels may be active at different time-points, motivating the need for a mixture of

kernel functions in modeling reciprocity.

4.5 Related Work

Point processes. Recent work on point process models of structured temporal data

include Simma and Jordan (2010); Perry and Wolfe (2013); DuBois et al. (2013); Guo

et al. (2015); He et al. (2015); Farajtabar et al. (2015); Du et al. (2016); Tan et al.

(2016). In Blundell et al. (2012), Hawkes processes were combined with the infinite

relational model (Kemp et al., 2006) to perform nonparametric clustering of nodes. This

forms a simplification to our models, with each node having a latent cluster index rather

than a latent embedding. In this model, messages are observed by all nodes in a cluster

rather than individual nodes, so that reciprocity operates at the cluster level. Blundell

et al. (2012) also do not model heterogeneity in the reciprocating dynamics among

users.

In Linderman and Adams (2014), the authors develop a framework that combines

random graph priors on the latent network structure with a reciprocating point process

observation model. This is roughly equivalent to our RLS model, which we use as a

proxy for comparison to Linderman and Adams (2014). However, our focus is not on

learning a latent network structure as much as on teasing apart complementary parts

of an observed point process. Similar to Figure 4.2, our latent embeddings can be

summarized with an associated graph; in this sense the DLS model can be thought to

learn two complementary graph structures underlying events on a network.

Graph embedding. Recent work in the graph mining community on learning feature

representations for nodes in static networks include Perozzi et al. (2014); Tang et al.

(2015); Grover and Leskovec (2016). The state-of-the-art approach is node2vec (Grover

and Leskovec, 2016), which extends the skip-gram neural network architecture (Mikolov

et al., 2013). Our experiments showed that by modeling both homophily and reciprocity
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in temporal interactions, the DLS model performs comparably or superior to node2vec

in static link prediction.

4.6 Summary

In this chapter, we have proposed latent space models for dynamic network data that

embed the network nodes into Euclidean space. Our approach models heterogeneity

across two important characteristics of such data—homophily and reciprocity—and

connects latent space models of static networks to point process models including Poisson

and Hawkes processes. The performance of our proposed dual latent space model shows

that it is crucial to account for both characteristics to accurately model dynamic networks.

In dynamic link prediction, we find that while the reciprocal latent space is important for

accurate predictions, the inclusion of the homophily latent space produces a significant

gain across all three real-world datasets. In static link prediction, while the reciprocal

latent spaces are not directly useful for prediction, they greatly improve the quality of

the estimated homophily latent space, by providing a denoising effect that filters out

communications driven primarily by reciprocity.

Our findings shed further light on recent observations in Rudolph et al. (2016),

who argue that modeling each observation conditioned on a set of other observations

improves the quality of the learned embeddings. They refer to the conditioning set

as context (e.g., in natural language the context of a word is its surrounding words).

Similarly, one might argue the context of a node in a network is its neighbors. Including

reciprocal latent spaces in the model implicitly conditions on the set of reciprocating

neighbors, and including homophily latent spaces implicitly conditions on the set of

similar neighbors.
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(a) e−‖zu−zv‖2
2 (b) e−‖x

(1)
u −x (1)v ‖

2
2

Figure 4.2.: Inferred node-similarity matrices in ENRON.

Figure 4.3.: Visualizing reciprocation patterns in ENRON.
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5. GOODNESS-OF-FIT TESTING FOR DISCRETE DISTRIBUTIONS VIA

STEIN DISCREPANCY

In Section 3.3, we discussed recent developments in nonparametric goodness-of-fit

testing for unnormalized probability distributions based on Stein’s method. However,

the currently available tests apply exclusively to continuous distributions with smooth

density functions. In this chapter, we introduce a kernelized Stein discrepancy measure

for discrete spaces, and develop a nonparametric goodness-of-fit test for discrete distri-

butions with intractable normalization constants. Furthermore, we propose a general

characterization of Stein operators that encompasses both discrete and continuous distri-

butions, providing a recipe for constructing new Stein operators. We apply the proposed

goodness-of-fit test to three statistical models involving discrete distributions, and our

experiments show that the proposed test typically outperforms a two-sample test based

on the maximum mean discrepancy.

5.1 Introduction

Let us begin by recalling our discussion in Section 3.3 on goodness-of-fit testing via

Stein discrepancy. Given a distribution p(x ) on X d and a class of test functions f ∈ F

on X d , a Stein operator Ap satisfies Ex∼p

�

Ap f (x )
�

= 0, so that when Ap is applied to any

test function f , the resulting function Ap f has zero-expectation under p. Additionally,

the expectation under any other distribution q 6= p should be non-zero for at least some

function f inF . WhenF is sufficiently rich, the maximum value sup f ∈F Ex∼q

�

Ap f (x )
�

serves as a discrepancy measure, called Stein discrepancy, between distributions p and q.

The properties of the Stein discrepancy measure depends on two objects: the Stein

operator Ap, and the set F . Different authors have studied different choices of F :

Gorham and Mackey (2015) considered test functions in the W2,∞ Sobolev space, and
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the resulting test statistic requires solving a linear program under certain smoothness

constraints. On the other hand, Oates et al. (2017); Chwialkowski et al. (2016); Liu

et al. (2016) proposed taking F to be the unit ball of a reproducing kernel Hilbert

space (RKHS) (cf. Section 3.1), which leads to test statistics that can be computed in

closed form and with time quadratic in n, the number of samples. Jitkrittum et al. (2017)

further proposed a linear-time adaptive test that constructs test features by optimizing

test power.

Regarding the choice of the Stein operator Ap, all the aforementioned works consider

the case when X ⊆ R is a continuous domain, p(x ) is a smooth density on X d , and

the Stein operator is defined in terms of the score function of p, sp(x ) =∇ log p(x ) =

∇p(x )/p(x ), where ∇ is the gradient operator. Observe that any normalization constant

in p cancels out in the score function, so that if the Stein operator Ap depends on p only

through sp, then the discrepancy measure sup f ∈F Ex∼q

�

Ap f (x )
�

can still be computed

when p is unnormalized. However, constructing the Stein operator using the gradient

becomes restrictive when one moves beyond distributions with smooth densities. For

discrete distributions, even in the simple case of Bernoulli random variables, none of the

aforementioned tests apply, since the probability mass function is no longer differentiable.

This motivates more general constructions of tests based on Stein’s method that would

also be applicable to discrete domains.

In this chapter, we focus on the case where X is a finite set. The model distribution

p(x ) is a probability mass function (pmf), whose normalization constant is computation-

ally intractable. We note that examples of such intractable discrete distributions abound

in statistics and machine learning, including the Ising model (Ising, 1924) in physics,

the (Bernoulli) restricted Boltzmann machine (RBM) (Hinton, 2002) for dimensionality

reduction, and the exponential random graph model (ERGM) (Frank and Strauss, 1986;

Wasserman and Pattison, 1996) in statistical network analysis.

Our primary contribution is in establishing a kernelized Stein discrepancy measure

between discrete distributions, using an appropriate choice of Stein operators for discrete

spaces. Then, adopting a similar strategy as Chwialkowski et al. (2016); Liu et al. (2016),
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we develop a nonparametric goodness-of-fit test for discrete distributions. Notably, the

proposed test also applies to discrete distributions that were previously not amenable to

classical tests due to the presence of intractable normalization constants. Furthermore,

we propose a general characterization of Stein operators that encompasses both discrete

and continuous distributions, providing a recipe for constructing new Stein operators.

For any Stein operator constructed as such, we could then define a kernelized Stein

discrepancy measure to establish a valid goodness-of-fit test. Finally, we apply our

proposed goodness-of-fit test to the Ising model, the Bernoulli RBM, and the ERGM,

and our experiments show that the proposed test typically outperforms a two-sample

test based on the maximum mean discrepancy (cf. Section 3.2) in terms of power while

maintaining control on false-positive rate.

5.2 Discrete Stein Operators

We first propose a simple Stein operator for discrete distributions, and then provide a

general characterization of Stein operators for both the discrete and continuous cases. In

particular, we draw upon ideas in the literature on score-matching methods (Hyvärinen,

2005, 2007; Lyu, 2009; Amari, 2016), which we elaborate on further in Section 4.5.

5.2.1 Difference Stein Operator

Definition 5.2.1 (Cyclic permutation). For a set X of finite cardinality, a cyclic permuta-

tion ¬ : X → X is a bijective function such that for some ordering x [1], x [2], . . . , x [|X |] of

the elements in X , ¬x [i] = x [(i+1)mod |X |], ∀i = 1,2, . . . , |X |.

Thus, starting with any element of x , repeated application of the ¬ operator generates

the set X : X = {x ,¬x , . . . ,¬(|X |−1)x}. In the simplest case, when X is a binary set, one

can take X = {±1} and define ¬x = −x .

The inverse permutation of ¬ is an operator ⨼ : X → X that satisfies ¬(⨼x) = ⨼(¬x) =

x for any x ∈ X . Under the ordering of Definition 5.2.1, we have ⨼x [i] = x [(i−1)mod |X |].
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It is easy to verify that ⨼ is also a cyclic permutation on X . When X is a binary set, the

inverse of ¬ is itself: ⨼= ¬.

Definition 5.2.2 (Partial difference operator and difference score function). Given

a cyclic permutation ¬ on X , for any vector x = (x1, . . . , xd)T ∈ X d , write ¬i x :=

(x1, . . . , x i−1,¬x i, x i+1, . . . , xd)T. For any function f : X d → R, denote the (partial) differ-

ence operator as

∆x i
f (x ) := f (x )− f (¬i x ), i = 1, . . . , d,

and write ∆ f (x ) = (∆x1
f (x ), . . . ,∆xd

f (x ))T. Define the (difference) score function as

sp(x ) := ∆p(x )/p(x ), with

(sp(x ))i =
∆x i

p(x )

p(x )
= 1−

p(¬i x )
p(x )

, i = 1, . . . , d. (5.1)

We will also be interested in the difference operator defined with respect to the

inverse permutation ⨼. To avoid cluttering notation, we shall use ∆ and sp to denote the

difference operator and score function defined with respect to ¬, and use ∆∗ to denote

the difference operator with respect to ⨼:

∆∗x i
f (x ) := f (x )− f (⨼i x ), i = 1, . . . , d.

As in the continuous case, the score function sp(x ) can be easily computed even if p

is only known up to a normalization constant: if p(x ) = p̃(x)/Z, then sp(x ) = ∆p̃(x)/p̃(x)

does not depend on Z . For an exponential family distribution p with base measure h(x ),

sufficient statistics φ(x ), and natural parameters θ :

p(x ) =
1

Z(θ )
h(x )exp{θTφ(x )},

the (difference) score function is given by

(sp(x ))i = 1−
h(¬i x )
h(x )

exp{θT(φ(¬i x )−φ(x ))}. (5.2)

In the continuous case, it was obvious that two densities p and q are equal almost

everywhere if and only if their score functions are equal almost everywhere. This still

holds for the difference score function, but its proof is less trivial.



64

Theorem 5.2.1. For any positive pmfs p and q on X d , we have that sp(x ) = sq(x ) for all

x ∈ X d if and only if p = q.

The proof of Theorem 5.2.1 requires the following lemma, due to Brook (1964):

Lemma 5.2.2 (Brook, 1964). Assume that p(x ) > 0 for all x ∈ X d . The joint distribu-

tion p(x ) is completely determined by the collection of singleton conditional distributions

p(x i|x−i), where x−i := (x1, . . . , x i−1, x i+1, . . . , xd), i = 1, . . . , d.

Proof. Let p(x1, . . . , xd) and p(y1, . . . , yd) denote the joint densities (pmfs or pdfs) for

(x1, . . . , xd) and (y1, . . . , yd), respectively. We can write

p(x1, x2, . . . , xd)
p(y1, y2, . . . , yd)

=
p(x1, x2, . . . , xd)
p(y1, x2, . . . , xd)

·
p(y1, x2, . . . , xd)
p(y1, y2, . . . , xd)

· · ·
p(y1, y2, . . . , yd−1, xd)
p(y1, y2, . . . , yd−1, yd)

=
p(x1|x2, . . . , xd)
p(y1|x2, . . . , xd)

·
p(x2|y1, x3, . . . , xd)
p(y2|y1, x3, . . . , xd)

· · ·
p(xd |y1, . . . , yd−1)
p(yd |y1, . . . , yd−1)

.

Thus, the collection of all singleton conditional distributions completely determine the

ratios of joint probability densities, which in turn completely determine the joint densities

themselves, since they have to sum to one.

Proof of Lemma 5.2.1. Clearly, p = q implies that sp(x ) = sq(x ) for all x ∈ X d . It

remains to be shown that the converse is true. By Eq. (5.1), sp(x ) = sq(x ) for all

x ∈ X d implies that p(¬i x )/p(x ) = q(¬i x )/q(x ) for all x ∈ X d and all i = 1, . . . , d. We

show that the latter implies that all the singleton conditional distributions of p and q

must match, i.e., p(x i|x−i) = q(x i|x−i) for all x i ∈ X and for all i = 1, . . . , d, where

x−i := (x1, . . . , x i−1, x i+1, . . . , xd).

Specifically, using the fact that ¬ is a cyclic permutation on X , we can write

1
p(x i|x−i)

=

∑

ξi∈X
p(x1, . . . , x i−1,ξi, x i+1, . . . , xd)

p(x1, . . . , x i−1, x i, x i+1, . . . , xd)

=
∑

ξi∈X

p(x1, . . . , x i−1,ξi, x i+1, . . . , xd)
p(x1, . . . , x i−1, x i, x i+1, . . . , xd)

=
|X |
∑

`=1

p(x1, . . . , x i−1,¬(`)x i, x i+1, . . . , xd)
p(x1, . . . , x i−1, x i, x i+1, . . . , xd)
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=
|X |
∑

`=1

p(¬(`)i x )
p(x )

=
|X |
∑

`=1

`−1
∏

j=0

p(¬( j+1)
i x )

p(¬( j)i x )
=
|X |
∑

`=1

`−1
∏

j=0

p(¬i y i j)

p(y i j)
, (5.3)

where we adopted the convention that ¬(0)x = x and written y i j := ¬
( j)
i x in the last term.

By Eq. (5.1), all the terms on the right-hand-side of Eq. (5.3) will be determined by the

score function sp(x ), and thus sp(x ) = sq(x ) for all x ∈ X d implies that all the singleton

conditional distributions must match: p(x i|x−i) = q(x i|x−i), ∀x ∈ X d . By Lemma 5.2.2,

the joint probability distribution is fully specified by the collection of singleton conditional

distributions, and thus we must have p(x ) = q(x ) for all x ∈ X d .

In the literature on score functions (Hyvärinen, 2007; Lyu, 2009), such results,

showing that a score function sp(x ) uniquely determines a probability distribution, are

called completeness results. For our purposes, such completeness results provide a basis

for establishing statistical hypothesis tests to distinguish between two distributions. We

first introduce the concept of a difference Stein operator.

Definition 5.2.3 (Difference Stein operator). Let ¬ be a cyclic permutation on X and let

⨼ be its inverse permutation. For any function f : X d → R and pmf p on X d , define the

difference Stein operator of p as

Ap f (x ) := sp(x ) f (x )−∆∗ f (x ), (5.4)

where sp(x ) = ∆p(x )/p(x ) is the difference score function defined w.r.t. ¬, and ∆∗ is the

difference operator w.r.t. ⨼.

We note that any intractable normalization constant in p cancels out in evaluating

the Stein operator Ap. The Stein operator satisfies an important identity:

Theorem 5.2.3 (Difference Stein identity). For any function f : X d → R and probability

mass function p on X d ,

Ex∼p

�

Ap f (x )
�

= Ex∼p

�

sp(x ) f (x )−∆∗ f (x )
�

= 0. (5.5)

Proof. Notice that

Ex∼p

�

Ap f (x )
�

=
∑

x∈X d

[ f (x )∆p(x )− p(x )∆∗ f (x )] .
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To complete the proof, simply note that for each i,

∑

x∈X d

f (x )∆x i
p(x ) =

∑

x∈X d

f (x )p(x )−
∑

x∈X d

f (x )p(¬i x ),

∑

x∈X d

p(x )∆∗x i
f (x ) =

∑

x∈X d

p(x ) f (x )−
∑

x∈X d

p(x ) f (⨼i x ).

The two equations are equal since ¬ and ⨼ are inverse cyclic permutations on X , with

¬i(⨼i x ) = ⨼i(¬i x ) = x .

Finally, we can extend the definition of the difference Stein operator to vector-valued

functions f : X d → Rm. In this case, ∆ f is an d×m matrix with (∆ f )i j =∆x i
f j(x ), and

the Stein operator takes the form

Ap f (x ) = sp(x ) f (x )T −∆∗ f (x ).

Similar to Theorem 5.2.3, one can show that for any function f : X d → Rm and positive

pmf p on X d ,

Ex∼p

�

Ap f (x )
�

= Ex∼p

�

sp(x ) f (x )T −∆∗ f (x )
�

= 0.

If m= d, taking the trace on both sides yields

Ep

�

tr
�

Ap f (x )
��

= Ep

�

sp(x )
T f (x )− tr (∆∗ f (x ))

�

= 0.

The following result provides more convenient expressions for evaluatingEx∼p

�

Ap f (x )
�

and Ex∼p

�

tr
�

Ap f (x )
��

. An analogous result for continuous distributions with smooth

densities was provided in Ley and Swan (2013).

Lemma 5.2.4. For positive pmfs p, q and any function f : X d → Rd , we have

Ex∼q

�

Ap f (x )
�

= Ex∼q

�

(sp(x )− sq(x )) f (x )T
�

,

Ex∼q

�

tr
�

Ap f (x )
��

= Ex∼q

�

(sp(x )− sq(x ))
T f (x )

�

.

Proof. Theorem 5.2.3 states that Ex∼q

�

Aq f (x )
�

= 0. Thus, writing Ex∼q

�

Ap f (x )
�

=

Ex∼q

�

Ap f (x )−Aq f (x )
�

= Ex∼q[(sp(x )− sq(x )) f (x )T] and taking the trace on both

sides completes the proof.
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5.2.2 Characterization of Stein Operators

Generalizing our construction in the previous section, we can further identify a broad

class of Stein operators which includes the difference Stein operator as a special case.

Let L be any operator defined on the space of functions F = { f : X d → R} that can

be written in the form1

L f (x ) =
∑

x ′∈X d

g(x , x ′) f (x ′), ∀ f ∈ F (5.6)

for some bivariate (possibly vector-valued) function g on X d × X d . Define a dual

operator L∗ via

L∗f (x ) =
∑

x ′∈X d

g(x ′, x ) f (x ′), ∀ f ∈ F . (5.7)

In fact, when X is a finite set, any linear operator L on F = { f : X d → R} can be

written in the form of Eq. (5.6). In this case, the operator L∗ as defined in Eq. (5.7) is the

adjoint operator of L: 〈L f , g〉= 〈 f ,L∗g〉 for all f , g ∈ F , where 〈·, ·〉 is the appropriate

inner-product on X d . If g(·, ·) is symmetric, then L is self-adjoint, i.e., L∗ = L.

Under these definitions, we have the following result which characterizes the Stein

operators on a discrete space X d .

Theorem 5.2.5. Denote F = { f : X d → R}. For any positive pmf p on X d , a linear

operator Tp satisfies the Stein identity

Ex∼p

�

Tp f (x )
�

= 0 (5.8)

for all functions f ∈ F if and only if there exist linear operators L and L∗ of the forms

(5.6) and (5.7), such that

Tp f (x ) =
Lp(x )
p(x )

f (x )−L∗f (x ) (5.9)

holds for all x ∈ X d and functions f ∈ F .
1The notion can also be extended to vector-valued functions f ; we omit this generalization here for clarity.
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Proof. Sufficiency: Suppose the linear operators L and L∗ take the forms of Eqs. (5.6)

and (5.7) for some function g, we show that the operator Tp defined via Eq. (5.9) satisfies

the Stein identity of Eq. (5.8). We can write

Ep

�

Tp f (x )
�

=
∑

x∈X d

[ f (x )Lp(x )− p(x )L∗f (x )]

=
∑

x∈X d

∑

x ′∈X d

f (x )g(x , x ′)p(x ′)−
∑

x∈X d

∑

x ′∈X d

p(x )g(x ′, x ) f (x ′) .

The two terms in the last line cancel out since the double-summations are invariant

under a swapping of summation indices x and x ′, giving Ep

�

Tp f (x )
�

= 0.

Necessity: Assume that a linear operator T satisfies Eq. (5.8); we show that it can be

written in the form of Eq. (5.9) for some linear operators L and L∗ of the forms (5.6)

and (5.7). Recall that for a finite set X , any function f : X d → R can be represented by a

vector f ∈ R|X |d , and any linear operator T on the set of functions f can be represented

via a matrix T ∈ R|X |d×|X |d under the standard basis of R|X |
d
. Under these notations, T f

can be represented by T f , and Eq. (5.8) can be rewritten in matrix form as

Ex∼p

�

Tp f (x )
�

=
∑

x∈X d

p(x )Tp f (x ) = pT(Tp f ) = 0 ,

which holds for any function f (i.e., for any vector f ) if and only if pTTp = 0. We can

always find a diagonal matrix D and a matrix L such that Tp = D − L. Observe that

pTTp = 0, i.e., pTD = pTL if and only if dii = pTL∗i/pi for all i, where dii is the i-th

diagonal element of D and L∗i is the i-th column of L. Thus, Eq. (5.8) holds if and only if

Tp = diag {p}−1 diag
�

LTp
	

− L

for some matrix L, where diag {p} denotes the diagonal matrix whose i-th diagonal

entry equals pi. Rewriting, we have

diag {p}Tp = diag
�

LTp
	

− diag {p}L .

Right-multiplying both sides by an arbitrary vector f ∈ R|X |d , we obtain

p � (Tp f ) = (LTp)� f − p � (LT f ) , (5.10)
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where � denotes the Hadamard product. Let L and L∗ be the linear operators with

matrices LT and L under the standard basis, Eq. (5.10) can be re-written as

p(x )Tp f (x ) = Lp(x ) f (x )− p(x )L∗f (x )

for all x ∈ X d . Finally, dividing by p(x ) on both sides yields Eq. (5.9).

We note that the sufficiency part of Theorem 5.2.5 remains valid when X is a

continuous space, p is a density, F ⊆ { f : X d → R} is some family of functions for

which Tp f and L f are well-defined, and the summations in Eqs. (5.6) and (5.7) are

replaced by integrations. However, the necessity part requires further conditions on the

expressiveness of F .

Theorem 5.2.5 essentially states that (for a fixed p) given any pair of adjoint operators

L and L∗, one can construct a linear operator Tp satisfying Stein’s identity; conversely,

any Stein operator Tp can be expressed using a pair of adjoint operators L and L∗. This

connection between adjoint operators and Stein operators enables us to unify different

forms of Stein operators for discrete and continuous distributions (see also Ley et al.

(2017) for related discussions).

Remark 5.2.6 (Continuous case). For a continuous space X ⊆ R, consider a smooth

density p on X d . Take L = ∇ to be the gradient operator, and let F consist of smooth

functions f : X d → R for which f (x ) p(x ) vanishes on the boundary ∂X . Using integration-

by-parts, one can show that the adjoint operator of L is L∗ = −∇. Then, applying Eq. (5.9)

of Theorem 5.2.5 recovers the continuous Stein operator of Eq. (3.10):

Ap f (x ) =∇ log p(x ) f (x ) +∇ f (x ).

More generally, for vector-valued functions f : X d → Rd , the adjoint operator of L = ∇

is L∗ = − (∇·) , the negative divergence. Let F consist of smooth functions f : X d → Rd

satisfying the boundary condition of Eq. (3.12). By modifying Eq. (5.9) accordingly to

Tp f (x ) =
Lp(x )
p(x )

f (x )T −L∗f (x ) (5.11)

and taking the trace on both sides, one recovers the Langevin Stein operator of Eq. (3.11):

Ap f (x ) = tr
�

Tp f (x )
�

= f (x )T(∇ log p(x )) +∇ · f (x ).
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Remark 5.2.7 (Discrete case). In Eqs. (5.6) and (5.7), define the vector-valued function

g : X d ×X d → Rd with

(g(x , x ′))i = I{x ′ = x} − I{x ′ = ¬i x} (5.12)

where I{·} is the indicator function. Then, we have

(L f (x ))i =
∑

x∈X d

(g(x , x ′))i f (x ) = f (x )− f (¬i x ),

which recovers the difference operator∆. Similarly, define g∗ by replacing ¬ with its inverse

permutation ⨼ in Eq. (5.12). Notice that g(x , x ′) = g∗(x ′, x ), and thus the adjoint of L is

given by L∗ =∆∗. In this case, Eq. (5.9) boils down to the difference Stein operator defined

in Eq. (5.4).

Note that if X is binary, then ¬ = ⨼, and L is self-adjoint. When L is self-adjoint, in

addition to Stein’s identity, the Stein operator defined via Eq. (5.9) also satisfies Tp p(x ) = 0.

Graph-based discrete Stein operators. Extending the form of Eq. (5.12), we can

obtain a more general recipe for constructing g, which, upon applying Theorem 5.2.5,

gives rise to other Stein operators on X d . Specifically, suppose we have identified a

simple graph G = (X d ,E) on |X |d vertices, with each vertex corresponding to a possible

configuration x ∈ X d . Then, it is natural to define g such that it respects the structure

of G, in the sense that g(x , x ′) = 0 if x ′ /∈ Nx ∪ {x}, where Nx := {x ′ : (x , x ′) ∈ E} is

the set of neighbors of x in G. If G is undirected, one would also make g symmetric, in

which case L≡ L∗ is self-adjoint.

Revisiting the difference Stein operator in this light, notice that ¬ defines a d-

dimensional (undirected) lattice graph G on X d , in which two vertices x and x ′ are

connected if and only if x ′ = ¬i x for some i ∈ {1, . . . , d}. In this case, every vertex x has

exactly d neighbors in G: Nx = {¬1x , . . . ,¬d x}. We then set g(x ,¬i x ) = −e i for each i,

g(x , x ) = e, and g(x , x ′) = 0 for x ′ 6∈Nx ∪ {x}, where e i ∈ Rd is the i-th standard basis

vector, and e ∈ Rd is the all-ones vector. This recovers the form of g in Eq. (5.12).
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As another example, one could take g(x , x ′) = −|Nx |−1 for x ′ ∈Nx and set g(x , x ′) =

I[x = x ′] otherwise. Then, Eq. (5.6) becomes

L f (x ) =
1
|Nx |

∑

x ′∈Nx

�

f (x )− f (x ′)
�

,

which recovers the normalized Laplacian of G (see also Amari, 2016). Thus, by specifying

an arbitrary graph structure G on X d , one could also utilize its Laplacian L to define a

corresponding Stein operator T by applying Theorem 5.2.5.

5.3 Kernelized Discrete Stein Discrepancy

We can now proceed similarly as in the continuous case (Liu et al., 2016; Chwialkowski

et al., 2016) to define the discrete Stein discrepancy and its kernelized counterpart. While

all results in this section hold for the general Stein operators discussed in Section 5.2.2,

for clarity we state them for the difference Stein operator described in Section 5.2.1.

Definition 5.3.1 (Discrete Stein discrepancy). Let X be a finite set. For a family F of

functions f : X d → Rd , define the discrete Stein discrepancy between two positive pmfs p, q

as

D(q ‖ p) := sup
f∈F
Ex∼q

�

tr
�

Ap f (x )
��

,

where Ap f (x ) = sp(x ) f (x )T −∆∗ f (x ) is the difference Stein operator w.r.t. p. Taking F

to be the unit ball in an RKHSH d of vector-valued functions f : X d → Rd , we obtain the

kernelized discrete Stein discrepancy (KDSD):

D(q ‖ p) = sup
f∈H d ,‖ f ‖H d≤1

Ex∼q

�

tr
�

Ap f (x )
��

. (5.13)

Although Eq. (5.13) involves solving a variational problem, the next two results show

that the kernelized discrete Stein discrepancy can actually be computed in closed-form.

Due to space constraints, we defer their proofs to the Appendix.

Theorem 5.3.1. The kernelized discrete Stein discrepancy as defined in Eq. (5.13) admits

an equivalent representation:

D(q ‖ p)2 = Ex ,x ′∼q

�

δp,q(x )
Tk(x , x ′)δp,q(x

′)
�

, (5.14)
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where δp,q(x ) := sp(x )− sq(x ) is the score-difference between p and q.

Proof. Observe that

Ex∼q

�

tr
�

Ap f (x )
��

=
d
∑

`=1

Ex∼q

�

s`p(x ) f`(x )−∆∗x` f`(x )
�

=
d
∑

`=1

Ex∼q

�

s`p(x ) 〈 f`, k(·, x )〉H −
¬

f`,∆
∗
x`

k(·, x )
¶

H

�

=
d
∑

`=1

¬

f`,Ex∼q

�

s`p(x ) k(·, x )−∆∗x`k(·, x )
�¶

H
,

where we used the reproducing property 〈 f`, k(·, x )〉H = f`(x ) and the fact that

∆∗x j
fi(x ) = fi(x )− fi(⨼ j x ) = 〈 fi, k(·, x )〉 −




fi, k(·,⨼ j x )
�

=



fi, k(·, x )− k(·,⨼ j x )
�

=
¬

f j,∆
∗
x j

k(·, x )
¶

.

Denoting β(·) := Ex∼q

�

sp(x )k(·, x )−∆∗k(·, x )
�

∈H d , we have

Ex∼q

�

tr
�

Ap f (x )
��

=
d
∑

`=1

〈 f`,β`〉H = 〈 f ,β〉H d .

Thus, we can rewrite the kernelized discrete Stein discrepancy as

D(q ‖ p) = sup
f∈H d ,‖ f ‖H d≤1

〈 f ,β〉H d ,

which immediately implies that D(q ‖ p) = ‖β‖H d since the supremum will be attained

by f = β/‖β‖H d .

By Lemma 5.2.4, we have

β(·) = Ex∼q

�

sp(x )k(·, x )−∆∗k(·, x )
�

= Ex∼q

�

(sp(x )− sq(x ))k(·, x )
�

.

Writing δp,q(x ) := sp(x )− sq(x ), we have

D(q ‖ p)2 = ‖β‖2
H d =

d
∑

`=1

〈β`,β`〉H

=
d
∑

`=1

¬

Ex∼q

�

δ`p,q(x ) k(·, x )
�

,Ex ′∼q

�

δ`p,q(x
′) k(·, x ′)

�¶

H
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=
d
∑

`=1

Ex ,x ′∼q

�

δ`p,q(x )



k(·, x ), k(·, x ′)
�

H δ
`
p,q(x

′)
�

= Ex ,x ′∼q

�

δp,q(x )
T



k(·, x ), k(·, x ′)
�

H δp,q(x
′)
�

= Ex ,x ′∼q

�

δp,q(x )
Tk(x , x ′)δp,q(x

′)
�

,

where we used the reproducing property, k(x , x ′) = 〈k(·, x ), k(·, x ′)〉H . This concludes

the proof.

Theorem 5.3.2. Define the kernel function

κp(x , x ′) = sp(x )
Tk(x , x ′) sp(x

′)− sp(x )
T∆∗x ′k(x , x ′)−∆∗x k(x , x ′)Tsp(x

′)

+ tr
�

∆∗x ,x ′k(x , x ′)
�

, (5.15)

then

D(q ‖ p)2 = Ex ,x ′∼q

�

κp(x , x ′)
�

. (5.16)

Proof. Expanding the expression for δp,q(x) and applying Lemma 5.2.4 twice, we obtain

D(q ‖ p)2 = Ex ,x ′∼q

�

δp,q(x )
Tk(x , x ′)δp,q(x

′)
�

= Ex∼q

�

δp,q(x )
TEx ′∼q

�

k(x , x ′)δp,q(x
′)
��

= Ex∼q

�

δp,q(x )
TEx ′∼q

�

k(x , x ′)sp(x
′)−∆∗x ′k(x , x ′)

��

= Ex ,x ′∼q

�

sp(x )
Tk(x , x ′) sp(x

′)− sp(x )
T∆∗x ′k(x , x ′)−∆∗x k(x , x ′)Tsp(x

′)

+ tr
�

∆∗x ,x ′k(x , x ′)
�

�

= Ex ,x ′∼q

�

κp(x , x ′)
�

,

which completes the proof.

The next result justifies D(q ‖ p) as a divergence measure.

Lemma 5.3.3. For a finite set X , let p and q be positive pmfs on X d . LetH be an RKHS

on X d with kernel k(·, ·), and let D(q ‖ p) be defined as in Eq. (5.13). Assume that the

Gram matrix K = [k(x , x ′)]x ,x ′∈X d is strictly positive definite, then D(q ‖ p) = 0 if and only

if p = q.
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Proof. By Theorem 5.3.1, we have

D(q ‖ p)2 = Ex ,x ′∼q

�

δp,q(x )
Tk(x , x ′)δp,q(x

′)
�

=
∑

x∈X d

∑

x ′∈X d

q(x )δp,q(x )
Tk(x , x ′)δp,q(x

′)q(x ′),

where δp,q(x ) = sp(x ) − sq(x ) ∈ Rd . Denote the `-th element of δp,q by δ`p,q, and

write g ` := [q(x )δ`p,q(x )]x∈X d for ` = 1, . . . , d. Then, D(q ‖ p)2 =
∑d
`=1 gT

`
Kg `. Since

K is strictly positive-definite, D(q ‖ p)2 = 0 if and only if g ` = 0 for all `. Therefore,

δp,q(x ) = 0 for all x ∈ X d . By Theorem 5.2.1, this holds if and only if p = q.

5.4 Goodness-of-Fit Testing via KDSD

Given a (possibly unnormalized) model distribution p and i.i.d.samples {x i}ni=1 from

an unknown data distribution q on X d , we would like to measure the goodness-of-fit

of the model distribution p to the observed data {x i}ni=1. To this end, we perform the

hypothesis test H0 : p = q vs. H1 : p 6= q using the kernelized discrete Stein discrepancy

(KDSD) measure. Denote S (q ‖ p) := D(q ‖ p)2; we can estimate S (q ‖ p) via a U-statistic

(Hoeffding, 1948) which provides a minimum-variance unbiased estimator:

bS (q ‖ p) =
1

n(n− 1)

n
∑

i=1

n
∑

j 6=i

κp(x i, x j) . (5.17)

As in the continuous case (cf. Section 3.3), the U-statistic bS (q ‖ p) is asymptotically

normal under the alternative hypothesis H1 : p 6= q, but becomes degenerate under the

null hypothesis H0 : p = q. More precisely, we have the following result adapted from

Theorem 3.3.1; its proof follows from standard asymptotic results of U-statistics.

Theorem 5.4.1 (Adapted from Theorem 4.1 of Liu et al. (2016)). Let k(x , x ′) be a

strictly positive definite kernel on X d , and assume that Ex ,x ′∼q

�

κp(x , x ′)2
�

<∞. We have

the following two cases:

(i) If q 6= p, then bS (q ‖ p) is asymptotically normal:

p
n
�

bS (q ‖ p)− S (q ‖ p)
� D
→N (0,σ2),
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where σ2 = Varx∼q(Ex ′∼q

�

κp(x , x ′)
�

)> 0.

(ii) If q = p, then σ2 = 0, and the U-statistic is degenerate:

nbS (q ‖ p)
D
→
∑

j

c j(Z
2
j − 1),

where {Z j}
iid∼ N (0,1) and {c j} are the eigenvalues of the kernel κp(·, ·) under q.

Since the asymptotic distribution of bS (q ‖ p) under the null hypothesis cannot be

easily calculated, we follow Liu et al. (2016) and adopt the bootstrap method for

degenerate U-statistics (Arcones and Gine, 1992; Huskova and Janssen, 1993) to draw

samples from the null distribution of the test statistic. Specifically, to obtain a bootstrap

sample, we draw random multinomial weights w1, . . . , wn ∼ Mult(n; 1/n, . . . , 1/n), set

ewi = (wi − 1)/n, and compute

bS∗(q ‖ p) =
n
∑

i=1

n
∑

j 6=i

ewi ew jκp(x i, x j). (5.18)

Upon repeating this procedure m times, we calculate the critical value of the test by

taking the (1−α)-th quantile of the bootstrapped statistics {bS∗b}
m
b=1.

The overall goodness-of-fit testing procedure is summarized in Algorithm 1. Comput-

ing the test statistic in Eq. (5.17) takes O(n2) time, where n is the number of observations,

and the bootstrapping procedure takes O(mn2) time, where m is the number of bootstrap

samples used.

Kernel choice. A practical question that arises when performing the KDSD test is the

choice of the kernel function k(·, ·) on X d . For continuous spaces, the RBF kernel might

be a natural choice; Gorham and Mackey (2017) also provide further recommendations.

For discrete spaces, a naive choice is the δ-kernel, k(x , x ′) = I{x = x ′}, which suffers

from the curse of dimensionality. A more sensible choice is the exponentiated Hamming

kernel:

k(x , x ′) = exp{−H(x , x ′)}, (5.19)

where H(x , x ′) := 1
d

∑d
i=1 I{x i 6= x ′i} is the normalized Hamming distance. The next

lemma shows that Eq. (5.19) defines a positive definite kernel.
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Algorithm 1 Goodness-of-fit testing via KDSD

1: Input: Difference score function sp of p, data samples {x i}ni=1 ∼ q, kernel function

k(·, ·), bootstrap sample size m, significance level α.

2: Objective: Test H0 : p = q vs. H1 : p 6= q.

3: Compute test statistic bS (q ‖ p) via Eq. (5.17).

4: for b = 1, . . . , m do

5: Compute bootstrap test statistic bS∗b via Eq. (5.18).

6: Compute critical value γ1−α by taking the (1−α)-th quantile of the bootstrap test

statistics {bS ∗b}
m
b=1.

7: Output: Reject H0 if test statistic bS (q ‖ p)> γ1−α, otherwise do not reject H0.

Lemma 5.4.2. The exponentiated Hamming kernel, as defined in Eq. (5.19), is positive

definite.

Proof. Without loss of generality, assume that X = {0, 1} is a binary set; the general case

can be easily accommodated by modifying the feature map to be described next. Define

the feature map φ : X d → X 2d , x 7→ ex , where ex2i−1 = I{x i = 0} and ex2i = I{x i = 1} for

i = 1, . . . , d. Then, the normalized Hamming distance can be expressed as

H(x , x ′) = 1−
1
d

d
∑

i=1

I{x i = x ′i}= 1−
1

2d

2d
∑

j=1

ex jex
′
j = 1−

1
2d
exT
ex ′ = 1−

1
2d
φ(x )Tφ(x ′).

Thus, 1−H(x , x ′) is a positive definite kernel. By Taylor expansion, exp{1−H(x , x ′)}

(and hence exp{−H(x , x ′)}) also constitutes a positive definite kernel on X d .

When the inputs x and x ′ encode additional structure about X d , the Hamming

distance may no longer be appropriate. For instance, when x ∈ {0, 1}(
d
2) represents the

(flattened) adjacency matrix of an undirected and unweighted graph on d vertices, two

graphs x and x ′ may be isomorphic yet have non-zero Hamming distance. In this case,

we can resort to the literature on graph kernels (Vishwanathan et al., 2010). Section 5.6

gives an example of using the Weisfeiler-Lehman graph kernel of Shervashidze et al.

(2011) to test whether a set of graphs {x i}ni=1 comes from a specific distribution.
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5.5 Related Work and Discussion

Stein’s method. Related to our characterization via adjoint operators, Ley et al. (2017)

also proposed the notion of a canonical Stein operator. Recently, Bresler and Nagaraj

(2017); Reinert and Ross (2017) applied Stein’s method to bound the distance between

two stationary distributions of irreducible Markov chains in terms of their Glauber

dynamics. Notably, they also make use of a difference operator for the binary case, and

it is interesting to investigate whether their analysis techniques could be adopted for

goodness-of-fit testing.

Goodness-of-fit tests. Closely related to our work is the kernelized Stein discrepancy

test proposed independently by Chwialkowski et al. (2016); Liu et al. (2016) for smooth

densities on continuous spaces. Our work further identifies and characterizes Stein oper-

ators for discrete domains, unifying them via Theorem 5.2.5 under a general framework

for constructing Stein operators from adjoint operators. Under this framework, any Stein

operator can be directly used to establish a KDSD test (under completeness conditions).

In addition to kernel-based tests, other forms of goodness-of-fit tests have also been

examined for discrete distributions. Some recent examples include Valiant and Valiant

(2016); Martín del Campo et al. (2017); Daskalakis et al. (2018). However, these tests

are often model-specific, and typically assume that the normalization constant is easy to

evaluate. In contrast, the KDSD test we propose is fully nonparametric, and applies to

any unnormalized statistical model.

Score-matching methods. Proposed by Hyvärinen (2005), score-matching methods

make use of score functions to perform parameter estimation in unnormalized models.

Suppose we observe data {x}ni=1 from some unknown density q(x ) which we would

like to approximate using a parameterized model density p(x ;θ ). To estimate the

parameters θ , score-matching methods minimize the Fisher divergence:

J(θ ) =

∫

ξ∈Rd

q(ξ)‖∇ξ log p(ξ;θ )−∇ξ log q(ξ)‖2
2 dξ.
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Similar to the continuous KSD (Liu et al., 2016), if we set

k(x , x ′) =
I{x = x ′}
p

q(x )q(x ′)

and apply Theorem 5.3.1, the KDSD statistic can be written as

D2(q ‖ p) = Ex∼q

�

‖sp(x )− sq(x )‖2
2

�

,

which takes the same form as J(θ )with the continuous score function∇ log p(x ) replaced

by the difference score function sp(x ).

Extensions of score-matching to discrete data have also been considered in Hyvärinen

(2007); Lyu (2009); Amari (2016), and our work draws insights from these in the design

of score functions for Stein operators. In particular, Lyu (2009) examined the connections

between adjoint operators and Fisher divergence, and Amari (2016) discussed score

functions for data from a graphical model. However, the connections to Stein operators

and kernel-based hypothesis testing have not appeared in the score-matching literature.

Two-sample tests. Complementing goodness-of-fit tests (or one-sample tests) are two-

sample tests, where we test if two collections of samples come from the same distribution.

A well-known kernel two-sample test statistic is the maximum mean discrepancy (MMD)

of Gretton et al. (2012) (see Section 3.2 for details). Given i.i.d.samples {x i}ni=1 ∼ p

and {y j}n
′

j=1 ∼ q, one could compute a U-statistic estimate of MMD(p, q) in O(nn′)

time (cf. Eq. (3.5)). The critical value of the test is calculated by bootstrapping on the

aggregated data.

Two-sample tests can also be used as goodness-of-fit tests by comparing observed

data with samples from the null model. For distributions with intractable normalization

constants, obtaining exact samples from p could become very difficult or expensive.

Further, approximate samples may introduce bias and/or correlation among the samples,

violating the test assumptions, and leading to unpredictable test errors.
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5.6 Applications

We apply the proposed KDSD goodness-of-fit test to three statistical models involving

discrete distributions. We describe the models and derive their difference score functions

in Section 5.6.1, and present experiments in Section 5.6.2.

5.6.1 Statistical Models

Ising model. The Ising model (Ising, 1924) is a canonical example of a Markov random

field (MRF). Consider an (undirected) graph G = (V, E), where each vertex i ∈ V is

associated with a binary spin. The collection of spins form a random vector x =

(x1, x2, . . . , xd), whose components x i and x j (i 6= j) interact directly only if (i, j) ∈ E.

The pmf is

pΘ(x ) =
1

Z(Θ)
exp

�

∑

(i, j)∈E

θi j x i x j

�

,

where θi j are the edge potentials and

Z(Θ) =
∑

x∈X d

exp

�

∑

(i, j)∈E, i< j

θi j x i x j

�

is the partition function which is prohibitive to compute when d is high. Recognizing

the pmf as an exponential family distribution, we can apply Eq. (5.2) to obtain the

difference score function:

(sp(x ))i = 1− exp

�

− 2x i

∑

j∈Ni

θi j x j

�

,

where Ni := { j : (i, j) ∈ E} denotes the set of vertices adjacent to node i in graph G.

Bernoulli restricted Boltzmann machine (RBM). The RBM (Hinton, 2002) is an

undirected graphical model consisting of a bipartite graph between visible units v and

hidden units h. In a Bernoulli RBM, both v and h are Bernoulli-distributed; X = {0, 1}.

The joint pmf of an RBM with M visible units v and K hidden units h is given by

p(h, v |θ ) =
1

Z(θ )
exp{−E(v , h;θ )},
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with energy function

E(v , h;θ ) = −(vTWh+ vTb+ hTc),

where W ∈ RM×K are the weights, b ∈ RM and c ∈ RK are the bias terms; θ := (W, b, c),

and

Z(θ ) =
∑

v

∑

h

exp{−E(v , h;θ )}

is the partition function.

Marginalizing out the hidden variables h, the pmf of v is given by

p(v |θ ) =
1

Z ′(θ )
exp{−F(v ;θ )},

where the free energy takes the form

F(v ;θ ) = −vTb−
K
∑

k=1

log(1+ exp{vTW∗k + ck}),

and Z ′(θ ) =
∑

v exp{−F(v ;θ )} is another normalization constant. (Here, W∗k denotes

the k-th column of W.) Thus, we can write down the (difference) score function as

(sp(v ;θ ))i = 1− exp{F(v ;θ )− F(¬i v ;θ )}

= 1− e ṽi bi

K
∏

k=1

1+ exp{vTW∗k + ṽiwik + ck}
1+ exp{vTW∗k + ck}

,

where ṽi = ¬vi − vi. Note that sp(v ;θ ) is again free of normalization constants and can

be easily evaluated.

Exponential random graph model (ERGM). The ERGM (Frank and Strauss, 1986;

Wasserman and Pattison, 1996) is a well-studied statistical model for network data (see

Section 2.1.1 for details). Recall that in a typical ERGM, the probability of observing an

adjacency matrix y ∈ {0,1}n×n is

p(y) =
1

Z(θ ,τ)
exp

§ n−1
∑

k=1

θkSk(y) +τT (y)
ª

.

Here, Sk(·) counts the number of edges (k = 1) or k-stars (k ≥ 2), T (·) counts triangles,

and Z(θ ,τ) is the normalization constant.
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We consider an ERGM distribution of undirected graphs y with three sufficient

statistics: S1(y), the number of edges (1-stars); S2(y), the number of wedges (2-stars);

and T (y), the number of triangles.2 The parameters for these sufficient statistics are θ1,

θ2, and τ, respectively. The score function can be written as

(sp(y))i j = 1− exp{θ1δ1(y) + θ2δ2(y) +τδ3(y)},

with the change statistics given by

δ1(y) := [S1(¬i j y)− S1(y)] = (−1)yi j

δ2(y) := [S2(¬i j y)− S2(y)] = (−1)yi j(|N \ j
i |+ |N

\i
j |)

δ3(y) := [T (¬i j y)− T (y)] = (−1)yi j |Ni ∩N j|

where Ni denotes the neighbor-set of node i, and N \ j
i :=Ni\{ j}.

5.6.2 Experiments

We apply the kernelized discrete Stein discrepancy (KDSD) test to the statistical mod-

els described in Sections 5.6.1.3 In the absence of established baselines, we compare with

a two-sample test based on the maximum mean discrepancy (MMD) (see Section 4.5).

For both KDSD and MMD, we utilize the exponentiated Hamming kernel (Eq. (5.19))

for the Ising model and RBM, and the Weisfeiler-Lehman graph kernel (Shervashidze

et al., 2011) for the ERGM.

Setup. Denote the null model distribution by p and the alternative distribution by q.

For each distribution, we draw exact i.i.d.samples by running n independent Markov

chains with different random initializations, each for 105 iterations, and collecting only

the last sample of each chain. For KDSD, we draw n samples from q; for MMD, we draw

n samples from q and another n samples from p. Under this setup, both KDSD and MMD

2 Notice that the sufficient statistics are not independent: e.g., S2(y)> T (y) since every triangle contains
three 2-stars.
3Code for the experiments is available at https://github.com/jiaseny/kdsd .

https://github.com/jiaseny/kdsd
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takes time O(mn2), where m is the number of bootstrap samples used to determine the

critical threshold. We set m= 5000 for both methods throughout.

For each model, we choose a “perturbation parameter” and fix its value for the null

distribution p, while drawing data samples under various values of the perturbation

parameter. We also vary the sample size n to examine the performance of the test as

n increases. For each value of the perturbation parameter and each sample size n, we

conduct 500 independent trials. In each trial, we first randomly flip a fair coin to decide

whether to set the alternative distribution q to be the same as p or with a different value

of the perturbation parameter. (In the former case, the null hypothesis H0 : p = q should

not be rejected, and in the latter case it should be.) Then, we draw n independent

samples from q (for KDSD) or both p and q (for MMD) and perform the hypothesis test

H0 : p = q vs. H1 : p 6= q under significance level α = 0.05. We evaluate the performance

of the KDSD and MMD tests in terms of their false-positive rate (FPR; Type-I error) and

false-negative rate (FNR; Type-II error), and report the results across 500 independent

trials.

Ising model. We consider a periodic 10-by-10 lattice, with d = 100 random variables.

We focus on the ferromagnetic setting and set θi j = 1/T, where T is the temperature of

the system. For T0 ∈ {5, 20} and various values of T ′, we test the hypotheses H0 : T = T0

vs. H1 : T 6= T0 using data samples drawn from the model under T = T ′. To draw

samples from the Ising model, we apply the Metropolis algorithm: in each iteration, we

propose to flip the spin of a randomly chosen variable x i, and adopt this proposal with

probability min
�

1, exp
�

− 2x i

∑

j∈Ni
θi j x j

	�

.

Bernoulli RBM. We use M = 50 visible units and K = 25 hidden units. We draw the

entries of the weight matrix W i.i.d.from a Normal distribution with mean zero and

standard deviation 1/M, and the entries of the bias terms b and c i.i.d.from the standard

Normal distribution. We corrupt the weights in W by adding i.i.d.Gaussian noise with

mean zero and standard deviation σ, and test the hypotheses H0 : σ = 0 (no-corruption)

vs. H1 : σ 6= 0 using data samples drawn under σ = σ′ for various values of σ′. To draw



83

samples from the RBM, we perform block Gibbs sampling by exploiting the bipartite

structure of the graphical model.

ERGM. We consider an ERGM distribution for undirected graphs on 20 nodes, with

the dimension of each sample d =
�20

2

�

= 190. We fix θ1 = −2 and τ = 0.01, For various

values of the 2-star parameter θ ′2, we test the hypotheses H0 : θ2 = 0 vs. H1 : θ2 6= 0

using data samples drawn under θ2 = θ ′2. To draw MCMC samples from the ERGM, we

utilize the ergm R package (Handcock et al., 2017).

Results. In Figure 5.1, the top row plots the testing error rate vs. different values of

the perturbation parameter in H1, for a fixed H0 and sample size; while the bottom row

plots the error rate vs. sample size n for a fixed pair of H0 and H1. We observe that

both KDSD and MMD maintain a false-positive rate (Type-I error) around or below the

significance level α = 0.05. In addition, KDSD consistently achieves lower false-negative

rate (Type-II error) than MMD in most cases, indicating that KDSD, by utilizing the score

function information of p, leads to a more powerful test.

It is interesting to note that in the ERGM example, MMD exhibits higher power than

KDSD when the data samples were drawn from an ERGM distribution with θ ′2 ∈ (0, 0.05)

(roughly). We hypothesize that this may correspond to a regime in which a small change

in θ2 causes a subtle change in the global graph structure that can be more easily detected

by MMD, while the difference Stein operator of Section 5.2.1 may be more adapt in

detecting local differences. Thus, the performance of the KDSD test could be improved

by constructing Stein operators (using the characterization of Section 5.2.2) that exploit

higher-order structure in the graph samples, which shall be investigated in future work.

5.7 Summary

In this chapter, we have defined a difference Stein operator for discrete spaces, and

introduced a kernelized Stein discrepancy measure for discrete probability distributions.

This enabled us to establish a nonparametric goodness-of-fit test for discrete distributions

with intractable normalization constants. Furthermore, we have proposed a general
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characterization of Stein operators that encompasses both discrete and continuous dis-

tributions, providing a recipe for constructing new Stein operators. We have applied the

proposed goodness-of-fit test to three statistical models involving discrete distributions,

and shown that it typically outperforms a two-sample test based on the maximum mean

discrepancy.
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6. A STEIN–PAPANGELOU GOODNESS-OF-FIT TEST FOR POINT

PROCESSES

Point processes provide a powerful framework for modeling the distribution and interac-

tions of events in time or space (see Section 2.2 for details). Their flexibility has given

rise to a variety of sophisticated models in statistics and machine learning, yet model di-

agnostic and criticism techniques remain underdeveloped. In this chapter, we propose a

general Stein operator for point processes based on the Papangelou conditional intensity

function. We then establish a kernel goodness-of-fit test by defining a Stein discrepancy

measure for general point processes. Notably, our test also applies to non-Poisson point

processes whose intensity functions contain intractable normalization constants due

to the presence of complex interactions among points. We apply our proposed test to

several point process models, and show that it outperforms a two-sample test based on

the maximum mean discrepancy.

6.1 Introduction

Point processes have been the subject of much recent activity in statistics and machine

learning, and a spate of sophisticated probabilistic and deep neural network models

have been developed (Reinhart, 2018; Linderman and Adams, 2014; Du et al., 2016;

Zaheer et al., 2017; Xiao et al., 2017). While the complexity of such point process

models has grown at a rapid pace, corresponding tools for model diagnostics, evaluation,

and criticism have lagged behind, restricted mostly to the spatial statistics literature.

Beyond Poisson-type processes (Daley and Vere-Jones, 2008; Brown et al., 2002), and

residual-based analysis and diagnostic plots for some spatial processes (Baddeley et al.,

2005), rigorous statistical tests to assess how well a point process model fits the observed

data remains an important and under-studied topic (Coeurjolly and Lavancier, 2013).
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In this chapter, we investigate an important model criticism technique—the goodness-

of-fit test—for point processes. Well-established goodness-of-fit tests for point processes,

are only available under the simplest scenarios—such as when the null model is a Poisson

process. For more general point processes, the construction of such tests typically rely

on pseudo-likelihood approximations (Strauss and Ikeda, 1990) which introduce biases

and errors that are hard to quantify, or heuristic summary statistics (such as Ripley’s

K-function) which could only capture certain aspects of the observed data and may lead

to a considerable loss of statistical power.

A major hurdle preventing the construction of rigorous statistical tests (such as

those based on the likelihood-ratio statistic) for more sophisticated point processes is

the presence of intractable normalization constants in the density/intensity functions.

For many widely used models that capture pairwise or higher-order dependencies

between points, these functions can often be evaluated only up to a normalization

constant, because summing over all possible configurations leads to an intractable

infinite-dimensional integral. This precludes the use of classical tests (such as the

likelihood-ratio test) which require the fully specified model density.

In Section 3.3 and Chapter 5, we discussed recent developments in nonparametric

goodness-of-fit testing based on Stein’s method (Stein, 1972, 1986), which work directly

with unnormalized probability distributions (Gorham and Mackey, 2015; Chwialkowski

et al., 2016; Liu et al., 2016; Jitkrittum et al., 2017; Yang et al., 2018). Central to these

tests is the notion of a Stein operator (cf. Section 3.3.1) Ap such that, for functions f

in some family F , the expectation E
�

Ap f
�

equals zero only under the distribution-of-

interest p. All the aforementioned works have considered distributions over fixed-length

(d-dimensional) vectors residing in a space X that is either the Euclidean space Rd (for

continuous distributions) or X d where X is a finite set (for discrete distributions). These

works have shown how to construct Stein operators (and goodness-of-fit tests) which

only require unnormalized probability densities. On the other hand, a realization of a

point process is a set containing an arbitrary number of points, and forms an element of
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an infinite-dimensional space. Constructing a Stein operator for this setting does not

follow easily from previous work, and requires a new set of tools.

A primary contribution of this chapter is to identify a suitable Stein operator for

general point processes. While such constructions have been well-studied for Poisson

process approximations in the probability literature (Barbour, 1988; Barbour and Brown,

1992), constructions for general point processes have been largely unexplored. Our

key technical tool in constructing a general Stein operator is the Papangelou conditional

intensity of a point process (see Section 2.2.2). Importantly, any (intractable) normaliza-

tion constant in the density or intensity function of the point process cancels out when

evaluating the Papangelou conditional intensity. Using our proposed Stein operator,

along with a suitable kernel function on the space of point configurations, we proceed to

define a kernelized Stein discrepancy measure between distributions, following a similar

strategy as in Section 3.3 and Chapter 5. This allows us to develop a computationally

feasible, nonparametric goodness-of-fit test for general point processes, including those

with intractable normalization constants (e.g., the Gibbs process). We apply our proposed

goodness-of-fit test to the Poisson process, as well as two processes with inter-point inter-

actions: the Hawkes process (Hawkes, 1971) exhibiting self-excitation, and the Strauss

process (Strauss, 1975) featuring repulsion. Our experiments show that the proposed test

outperforms a two-sample test based on the maximum mean discrepancy (cf. Section 3.2)

in terms of power while maintaining control on false-positive rate.

6.2 Stein Operators for Point Processes

As discussed in Section 3.3.1, Stein’s method involves identifying an operator A that

satisfies Stein’s identity: a random variable Φ is distributed according to the probability

measure µ if and only if Eµ[Aµh(Φ)] = 0 for all functions h in some class H. When Φ is

real-valued, A can be characterized through a simple differential operator (the Langevin

Stein operator of Eq. (3.11)), with Stein’s identity following easily from integration-by-

parts. When φ is discrete-valued, an alternative Stein operator using partial differences
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was provided in Yang et al. (2018). However, when φ is a point process—a random

variable taking values in an infinite-dimensional space NX—we will require a new set of

tools, based on the generator method of Barbour (1988).

We begin by reviewing the Stein operator for the Poisson process, and then propose a

general Stein operator for arbitrary finite point processes. Our proposed Stein operator

can be easily evaluated for point processes whose intensity functions contain intractable

normalization constants, such as the Gibbs process.

6.2.1 Stein Operator for the Poisson Process

Stein’s method for Poisson process approximation was pioneered by Barbour and

Brown (1992), using the generator method of Barbour (1988). For a Poisson process Φµ

on X with mean measure µ, Barbour and Brown (1992) considered an immigration-

death process on X with immigration intensity µ and unit per-capita death rate. This

process has stationary distribution Φµ, and infinitesimal generator Aµ given by

(Aµh)(φ) =
∫

X
[h(φ +δx)− h(φ)]µ(dx) +

∫

X
[h(φ −δx)− h(φ)]φ(dx) (6.1)

for any configuration φ ∈NX. Notably, the infinitesimal generator Aµ characterizes the

Poisson process Φµ, as demonstrated by the following result:

Theorem 6.2.1 (Stein identity for the Poisson process (Barbour and Brown, 1992)). Let

Aµ be the infinitesimal generator defined in Eq. (6.1). A point process Φ on X is a Poisson

process with intensity measure µ if and only if for any measurable and bounded function

h : NX→ R,

E
�

Aµh(Φ)
�

= 0. (6.2)

In the literature on Stein’s method (Stein, 1986), an operator A that characterizes

the distribution of Φ is called a Stein operator, and Eq. (6.2) a Stein identity.

Although Barbour (1988) derived the expression of A using the generator method,

Theorem 6.2.1 can actually be viewed as a direct consequence of the Mecke formula
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(Theorem 2.2.1). This hints at a possible generalization of the Stein operator for Poisson

processes in Eq. (6.1) to general (finite) point processes, which we discuss next.

6.2.2 The Stein–Papangelou Operator

Stein’s method for Poisson process approximation has been extensively studied

since Barbour and Brown (1992), yet few works have considered more general point

processes such as Hawkes processes and Gibbs processes (with the exceptions of Schuh-

macher and Stucki (2014); Decreusefond and Vasseur (2018)). Here, we propose a

generalization of the Stein operator in Eq. (6.1) to general (finite) point processes on X.

Our key insight is the analogy between the Mecke formula (Theorem 2.2.1) for Poisson

processes and the GNZ formula (Theorem 2.2.2) for general point processes.

We begin by providing an interpretation of the right-hand side of Eq. (6.1). From

the complete randomness of the Poisson process, µ(dx) = λ(x)dx gives the conditional

intensity of an event at location x given the rest of the Poisson process realization φ.

Then, the first integral equals the expected change in the value of the function h if a

new event were added to the point process realization. Similarly, the second term gives

the average change in h if one of the events were removed from φ. For a point process

model with interactions, the conditional intensity at location x will depend on the rest of

the point process realization; indeed, this is exactly the Papangelou conditional intensity

ρ(x |φ). Thus, it is natural to consider substituting the intensity function λ(x) with the

Papangelou conditional intensity ρ(x |φ). Somewhat surprisingly, we can show that the

resulting expression still gives a valid Stein operator for the associated point process.

To simplify presentation, let us define the ‘inclusion’ and ‘exclusion’ functionals

D+x ,D−x at a point x ∈ X as

(D+x h)(φ) := h(φ +δx)− h(φ);

(D−x h)(φ) := h(φ)− h(φ −δx),

for any measurable and bounded function h : NX→ R and (finite) point configuration

φ ∈NX. Using these notations, we have the following definition:
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Definition 6.2.1 (Stein–Papangelou operator for finite point processes). Letρ : X×NX→

R be the Papangelou conditional intensity of a finite point process on X. Define the Stein–

Papangelou operator Aρ via

(Aρh)(φ) =

∫

X
(D+x h)(φ)ρ(x |φ)dx −

∫

X
(D−x h)(φ)φ(dx)

=

∫

X
[h(φ +δx)− h(φ)]ρ(x |φ)dx +

∑

x∈φ

[h(φ −δx)− h(φ)] (6.3)

for any function h : NX→ R and configuration φ ∈NX.

Notice that Eq. (6.3) reduces to Eq. (6.1) for a Poisson process, since its Papangelou

conditional intensity equals its intensity function: ρ(x |φ)dx = λ(x)dx = µ(dx). A

crucial advantage of Eq. (6.3) is that the Stein operator Aρ now depends only on the

Papangelou conditional intensity ρ of the point process, which is usually easy to obtain

even when the point process likelihood itself is computationally intractable.

We conclude this section by showing that Eq. (6.3) indeed defines a valid Stein

operator for general (finite) point processes—i.e., that it satisfies a Stein identity.

Theorem 6.2.2 (Stein identity for finite point processes). Let Φ be a finite point process

on X with Papangelou conditional intensity ρ : X×NX→ R, and let Aρ be the operator

defined via Eq. (6.3). Then, we have

E
�

Aρh(Φ)
�

= 0 (6.4)

for all measurable and bounded functions h : NX→ R.

Proof. To prove Eq. (6.4), it suffices to show that

E
�∫

X
(D+x h)(Φ)ρ(x |Φ)dx

�

= E

�

∑

x∈Φ

(D−x h)(Φ)

�

for any function h : NX → R and configuration φ ∈ NX. Notice that for any x ∈ φ,

(D−x h)(φ) = h(φ)− h(φ − δx) = h(φ − δx + δx)− h(φ − δx) = (D+x h)(φ − δx). Thus,

applying the GNZ formula (Theorem 2.2.2) with h(x ,Φ) := (D+x h)(Φ) gives the desired

result.

A similar idea, but under a different context, has also been proposed in the probability

literature (Schuhmacher and Stucki, 2014).
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6.3 Stein Discrepancy and Goodness-of-Fit Testing

Equipped with a proper Stein operator, we are now ready to define a notion of

discrepancy between two point processes with different intensity measures.

6.3.1 (Kernelized) Stein Discrepancy

Following a central observation made by Gorham and Mackey (2015) under the

context of continuous distributions with smooth densities, we note that since the Stein

identity of Eq. (6.4) holds when the point process Φ has Papangelou conditional inten-

sity ρ (denoted Φ ∼ ρ), one could consider the maximum violation of Eq. (6.4) when

Φ ∼ η 6= ρ by choosing test functions within a function class F . This leads to the

following definition:1

Definition 6.3.1 (Stein discrepancy for point processes). Let Φ be a finite point process

on X with Papangelou conditional intensity ρ : X ×NX → R, and let Aρ be the Stein

operator defined via Eq. (6.3). For a family F of functions h : NX→ R, define the Stein

discrepancy between Papangelou conditional intensities η and ρ as

DF (η‖ρ) := sup
h∈F
EΦ∼η

�

Aρh(Φ)
�

. (6.5)

Clearly, DF (η‖ρ) = 0 when η ≡ ρ. While in principle the Stein discrepancy can

be defined with respect to any family of functions F , in practice we need to choose a

function space that is both rich enough to ensure that the resulting Stein discrepancy

has sufficient discriminative power, yet also suitably tractable such that Eq. (6.5) can be

efficiently computed.

Toward this end, we follow Chwialkowski et al. (2016); Liu et al. (2016) and

take F to be the unit-ball in a reproducing kernel Hilbert space (RKHS). Specifically,

let k : NX ×NX → R be a positive definite (p.d.) kernel on the space of finite point

configurations NX (Section 6.3.3 discusses various choices of k), and let Hk be its

associated RKHS (consisting of functions h : NX→ R). We have the following definition:
1As Eq. (6.3) reduces to Eq. (6.1) for Poisson processes, we present all results using the Stein–
Papangelou operator.
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Definition 6.3.2. The kernelized Stein discrepancy (KSD) between finite point processes

with Papangelou conditional intensities η and ρ is

DHk
(η‖ρ) := sup

h∈Hk ,‖h‖Hk
≤1
EΦ∼η

�

Aρh(Φ)
�

, (6.6)

whereHk is the RKHS of a p.d. kernel k(·, ·) on NX.

Using the reproducing property of Hk, our next result shows that Eq. (6.6) can

actually be evaluated in closed-form. This follows directly from Liu et al. (2016); due to

space constraints, we defer its proof to the Appendix.

Theorem 6.3.1. The squared-KSD can be expressed as

D2
Hk
(η‖ρ) = EΦ,Ψ∼η

�

κρ(Φ,Ψ)
�

, (6.7)

where κρ(φ,ψ) :=Aψ
ρ
Aφ
ρ

k(φ,ψ) is a kernel function on NX obtained by applying the Stein

operator A twice on each argument of the reproducing kernel k(·, ·) ofHk. Its expression is

given by

κρ(φ,ψ)

=

∫

X

∫

X

�

k(φ +δu,ψ+δv)− k(φ,ψ+δv)− k(φ +δu,ψ) + k(φ,ψ)
�

ρ(u|φ)ρ(v|ψ)du dv

+

∫

X

�

∑

x∈φ

�

k(φ −δx ,ψ+δv)− k(φ −δx ,ψ)
�

− |φ| ·
�

k(φ,ψ+δv)− k(φ,ψ)
�

�

ρ(v|ψ)dv

+

∫

X

�

∑

y∈ψ

�

k(φ +δu,ψ−δy)− k(φ,ψ−δy)
�

− |ψ| ·
�

k(φ +δu,ψ)− k(φ,ψ)
�

�

ρ(u|φ)du

+

�

∑

x∈φ

∑

y∈ψ

k(φ −δx ,ψ−δy)− |φ| ·
∑

y∈ψ

k(φ,ψ−δy)− |ψ| ·
∑

x∈φ

k(φ −δx ,ψ) + |φ| · |ψ| · k(φ,ψ)

�

.

(6.8)

Proof. By the reproducing property ofHk, h(φ) = 〈h(·), k(φ, ·)〉Hk
. For any x ∈ X, we

have

(D+x h)(φ) = 〈h(·), k(φ +δx , ·)〉Hk
− 〈h(·), k(φ, ·)〉Hk

=



h(·), (D+x k)(φ, ·)
�

Hk
;

(D−x h)(φ) = 〈h(·), k(φ, ·)〉Hk
− 〈h(·), k(φ −δx , ·)〉Hk

=



h(·), (D−x k)(φ, ·)
�

Hk
.
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Thus, by Eq. (6.3),

EΦ∼η
�

Aρh(Φ)
�

= EΦ∼η

�

∫

X
(D+x h)(Φ)ρ(x |Φ)dx −

∫

y∈X
(D−x h)(Φ)Φ(dx)

�

= EΦ∼η

�

∫

X




h(·), (D+x k)(Φ, ·)
�

Hk
ρ(x |Φ)dx −

∫

y∈X




h(·), (D−x k)(Φ, ·)
�

Hk
Φ(dx)

�

= EΦ∼η

�

�

h(·),
∫

X
(D+x k)(Φ, ·)ρ(x |Φ)dx

�

Hk

−
�

h(·),
∫

X
(D−x k)(Φ, ·)Φ(dx)

�

Hk

�

=



h(·), EΦ∼η
�

Aρk(Φ, ·)
��

Hk
.

Defining βη,ρ := EΦ∼η
�

Aρk(Φ, ·)
�

, we can rewrite the kernelized Stein discrepancy as

DHk
(η‖ρ) = sup

h∈H ,‖h‖Hk
≤1




h, βη,ρ

�

Hk
,

which immediately implies that DHk
(η‖ρ) = ‖βη,ρ‖Hk

since the supremum will be

obtained by h= βη,ρ/‖βη,ρ‖Hk
. Therefore, we can write

D2
Hk
(η‖ρ) = ‖βη,ρ‖2

Hk
=
¬

EΦ∼η
�

AΦ
ρ
k(Φ, ·)

�

,EΨ∼η
�

AΨ
ρ

k(Ψ, ·)
�¶

Hk

= EΦ,Ψ∼η

h
¬

AΦ
ρ
k(Φ, ·),AΨ

ρ
k(Ψ, ·)

¶

Hk

i

= EΦ,Ψ∼η

�

AΦ
ρ
AΨ
ρ
〈k(Φ, ·), k(Ψ, ·)〉Hk

�

= EΦ,Ψ∼η

�

AΦ
ρ
AΨ
ρ

k(Φ,Ψ)
�

,

where we applied the reproducing property, 〈k(Φ, ·), k(Ψ, ·)〉Hk
= k(Φ,Ψ).

Deriving the expression in Eq. (6.8). Fixing ψ and applying Eq. (6.3) to k(φ,ψ) viewed

as a function of φ, we have

Aφ
ρ

k(φ,ψ) =

∫

X
[k(φ +δu,ψ)− k(φ,ψ)]ρ(u|φ)du+

∑

x∈φ

[k(φ −δx ,ψ)− k(φ,ψ)] .

Now, fixing φ and applying Eq. (6.3) to Aφ
ρ

k(φ,ψ) viewed as a function of ψ, we have

AψρA
φ
ρ k(φ,ψ)

=

∫

X

�

Aφρ k(φ,ψ+δv)−Aφρ k(φ,ψ)
�

ρ(v|ψ)dv +
∑

y∈ψ

�

Aφρ k(φ,ψ−δy)−Aφρ k(φ,ψ)
�

=

∫

X

�

�

∫

X
[k(φ +δu,ψ+δv)− k(φ,ψ+δv)]ρ(u|φ)du+

∑

x∈φ

[k(φ −δx ,ψ+δv)− k(φ,ψ+δv)]
�
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−
�

∫

X
[k(φ +δu,ψ)− k(φ,ψ)]ρ(u|φ)du+

∑

x∈φ

[k(φ −δx ,ψ)− k(φ,ψ)]
�

�

ρ(v|ψ)dv

+
∑

y∈ψ

�

�

∫

X

�

k(φ +δu,ψ−δy)− k(φ,ψ−δy)
�

ρ(u|φ)du+
∑

x∈φ

�

k(φ −δx ,ψ−δy)− k(φ,ψ−δy)
�

�

−
�

∫

X
[k(φ +δu,ψ)− k(φ,ψ)]ρ(u|φ)du+

∑

x∈φ

[k(φ −δx ,ψ)− k(φ,ψ)]
�

�

=

∫

X

∫

X

�

k(φ +δu,ψ+δv)− k(φ,ψ+δv)− k(φ +δu,ψ) + k(φ,ψ)
�

ρ(u|φ)ρ(v|ψ)du dv

+

∫

X

�

∑

x∈φ

�

k(φ −δx ,ψ+δv)− k(φ −δx ,ψ)
�

− |φ| ·
�

k(φ,ψ+δv)− k(φ,ψ)
�

�

ρ(v|ψ)dv

+

∫

X

�

∑

y∈ψ

�

k(φ +δu,ψ−δy)− k(φ,ψ−δy)
�

− |ψ| ·
�

k(φ +δu,ψ)− k(φ,ψ)
�

�

ρ(u|φ)du

+

�

∑

x∈φ

∑

y∈ψ

k(φ −δx ,ψ−δy)− |φ| ·
∑

y∈ψ

k(φ,ψ−δy)− |ψ| ·
∑

x∈φ

k(φ −δx ,ψ) + |φ| · |ψ| · k(φ,ψ)

�

,

which recovers the expression in Eq. (6.8). This concludes the proof.

To evaluate κρ(φ,ψ) for a pair of configurations (φ,ψ) using Eq. (6.8), we need to

compute one double integral and two single integrals over the domain X ⊆ Rd as well as

summations over the points in both φ and ψ.2 Evaluating these integrals could require

numerical integration techniques, but observe that we have reduced the problem of

evaluating a normalization constant for a distribution on NX (an infinite-dimensional

integral) to a finite-dimensional one. For most applications, d is small (d = 1 for

temporal point processes and typically d = 2 for spatial point processes), and standard

numerical quadrature methods should suffice.

While Theorem 6.2.2 implies that DHk
(η‖ρ) = 0 for η ≡ ρ, we note that for non-

Poisson processes, DHk
(η‖ρ) = 0 may not be sufficient to guarantee that η≡ ρ. This

is due to the fact that while the Mecke formula fully characterizes a Poisson process,

the GNZ formula (which was crucial in establishing our Stein operator) provides only

a necessary condition for a point process to have a specific Papangelou conditional

intensity.

2For concreteness, we provide example Python code for implementing Eq. (6.8) in Appendix B.
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6.3.2 Goodness-of-Fit Testing via KSD

We now apply the kernelized Stein discrepancy measure of Definition 6.3.2 to con-

struct a goodness-of-fit test for general (finite) point processes, including those with

computationally intractable intensity functions.

Suppose we observe samples {Xi}mi=1 from a point process with unknown Papangelou

conditional intensity η, where each Xi := {xk}
ni
k=1 ⊆ X is a collection of points in X

(note that the cardinalities ni would vary). Given a statistical model which posits that

the observed samples arose from a point process with (known) Papangelou conditional

intensity ρ, we would like to quantify the ‘goodness-of-fit’ of the model ρ to the data

{Xi}mi=1. (Often we have only a single realization X of a point process, rather than

many realizations of the process. In this case, it suffices to partition the space into a

collection of blocks with equal volume, and treat the restriction of X to block i as the

i-th realization Xi.)

Formally, we perform the hypothesis test H0 : ρ = η vs. H1 : ρ 6= η using kernelized

Stein discrepancy (KSD). For convenience, we omit the dependency onHk and denote

S (η‖ρ) := D2
Hk
(η‖ρ). Given observed samples {Xi}mi=1 from a point process with

(unknown) Papangelou conditional intensity η, by Eq. (6.8) we can estimate S (η‖ρ)

via a U-statistic (Hoeffding, 1948) which gives a minimum-variance unbiased estimator:

bS (η‖ρ) =
1

m(m− 1)

m
∑

i=1

m
∑

j 6=i

κρ(Xi,X j), (6.9)

where the expression for κρ(φ,ψ) is shown in Eq. (6.8).3 By standard asymptotic results

on U-statistics (analogous to Theorem 3.3.1), the U-statistic bS (η‖ρ) is asymptotically

normally distributed under the alternative hypothesis H1 : ρ 6= η:

p
m (bS (η‖ρ)− S (η‖ρ))

D
→N (0,σ2),

where σ2 > 0, but becomes degenerate under the null hypothesis H0 : ρ = η.

Since the asymptotic distribution of bS (η‖ρ) under H0 is not available in closed-form,

we follow Liu et al. (2016) and adopt the generalized bootstrap method for degenerate

3When evaluating Eq. (6.8), recall thatφ+δx andφ−δx are equivalent toφ∪{x} andφ\{x}, respectively.
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U-statistics (Arcones and Gine, 1992; Huskova and Janssen, 1993) to approximate

the distribution. To obtain a bootstrap sample, we draw random multinomial weights

w1, . . . , wm ∼Mult(m; 1/m, . . . , 1/m), set ewi = (wi − 1)/m, and compute

bS∗(η‖ρ) =
m
∑

i=1

m
∑

j 6=i

ewi ew jκp(Xi,X j). (6.10)

Upon repeating this procedure em times, we calculate the critical value of the test by

taking the (1 − α)-th quantile of the bootstrapped statistics {bS∗b}
em
b=1. We reject the

null hypothesis H0 if bS (η‖ρ)> γ1−α. The overall goodness-of-fit testing procedure is

summarized in Algorithm 2.

As noted at the end of Section 6.3.1, S (η‖ρ) = 0 may be insufficient to guaran-

tee that η ≡ ρ. Thus, the KSD goodness-of-fit test may fail to reject H0 even when

the observed data arose from a point process with a Papangelou conditional intensity

different from that specified by the null model, yielding Type-II errors. To the best of

our knowledge, no necessary-and-sufficient condition for characterizing general (non-

Poisson) point processes is known in the literature, and existing approaches (Baddeley

and Turner, 2005; Coeurjolly and Lavancier, 2013) also only guarantee Type-I error

control, and suffer from the same loss of power.
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Computational complexity. Calculating the test statistic bS (η‖ρ) in Eq. (6.9) requires

O(m2) evaluations of κρ(Xi,X j), where m is the number of data samples. Once the

kernel matrix [κρ(Xi,X j)]mi, j=1 is cached, the bootstrapping procedure takes O(em ·m2)

time, where em is the number of bootstrap samples.

To be more precise, recall that a sample Xi consists of ni := |Xi| points in X. Eval-

uating κρ(Xi,X j) for each pair of samples (Xi,X j) using Eq. (6.8) requires numerical

integration. Assuming q quadrature points per dimension, the time complexity for a

single evaluation of κρ(Xi,X j) is given by

O((q2d + 2 qd n̄+ |n̄|2) · tk + 2 qd tρ) =O((qd + |n̄|)2 · n̄2).

Here, n̄ is the average cardinality of the observed samples, tk is the time required

to evaluate the kernel function k(·, ·) for a pair of samples with size n̄, and tρ is the

time needed for a single evaluation of the Papangelou conditonal intensity (typically,

tk, tρ =O(n̄2) in the worst case). Putting everything together, the overall time complexity

of Algorithm 1 is

O(m2 · (qd + |n̄|)2 · n̄2 + em ·m2).

Note that when d is large, one could apply Monte Carlo integration in lieu of numerical

quadrature to avoid the curse of dimensionality, and the qd term would be replaced by c,

the number of Monte Carlo points.

6.3.3 Kernel Functions for Point Processes

Our theoretical development so far hold generally for any positive definite kernel

on the space of finite counting measures NX. There has been work on set kernels or

multi-instance kernels (Gärtner et al., 2002), where the similarity of two sets is measured

by their average pairwise point similarities, as well as kernels which make parametric

assumptions on the distributions of the points (Kondor and Jebara, 2003; Bach, 2008;

Carrière et al., 2017).

We argue that a proper kernel function k(X ,Y) between two point configurations

X ,Y ⊆ X should capture their similarities with regard to their extrinsic and/or intrinsic
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characteristics as needed. Extrinsic characteristics refer to inhomogeneities in intensity,

resulting in different expected counts for different point processes in the same parts of the

X-space. Intrinsic characteristics pertain to point interactions within a point process—i.e.,

whether the points exhibit attraction or repulsiveness. Any prior knowledge regarding

the nature of deviations from the null model could accordingly be incorporated into the

kernel function. One simple approach would be to map each point configuration into a

feature-vector, with components including e.g., the number of points in different regions

of the space, the number of points within some distance r of each other, the average

distance from a point to their k-th nearest neighbor, etc.

As a flexible nonparametric alternative that takes both extrinsic and intrinsic features

into consideration, we propose to use the maximum mean discrepancy (MMD) between

two counting measures to define a p.d. kernel. Specifically, we have the following:

Proposition 6.3.1. Given a positive definite kernel kX(·, ·) on the ground space X, define

the M-kernel:

kM(φ,ψ) := exp{−cd2(φ,ψ)}, (6.11)

wherecd2(φ,ψ) denotes the V -statistic estimate of the squared-MMD between configurations

φ,ψ ∈NX:

cd2(φ,ψ) :=
1
|φ|2

∑

x∈φ

∑

x ′∈φ

kX(x , x ′) +
1
|ψ|2

∑

y∈ψ

∑

y ′∈ψ

kX(y, y ′)−
2

|φ| · |ψ|

∑

x∈φ

∑

y∈ψ

kX(x , y).

(6.12)

Then, kM(·, ·) is a positive definite kernel on NX.4

The proof of Proposition 6.3.1 utilizes the following result of Schoenberg (1938):

Lemma 6.3.2 (Schoenberg, 1938). The function

k(x , y) := exp
§

−
f (x , y)
`

ª

4If either φ or ψ is an empty configuration, we define k(φ,ψ) = 1 if both are empty and k(φ,ψ) = 0
otherwise.
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defined on a domain D is a positive definite kernel for all ` > 0 if and only if f is a condition-

ally negative definite function, i.e.,
∑n

i, j=1 cic j f (x i, x j)≤ 0 for all n ∈ N, x1, . . . , xn ∈ D,

and c1, . . . , cn ∈ R such that
∑n

i=1 ci = 0.

Proof of Proposition 6.3.1. Denote

ξ(φ,ψ) :=
∑

x∈φ

∑

y∈ψ

kX(x , y). (6.13)

By Proposition 3.1 of Gärtner et al. (2002), ξ(·, ·) is a p.d. kernel on NX if kX is a p.d. ker-

nel on X. By Schoenberg (1938) (Lemma 6.3.2 in the Appendix), to show that Eq. (6.11)

defines a p.d. kernel, it suffices to show that cd2 is a conditionally negative-definite

function. To this end, observe that for any n ∈ N, φ1, . . . ,φn ∈ NX, and c1, . . . , cn ∈ R

satisfying
∑n

i=1 ci = 0, we have

n
∑

i=1

n
∑

j=1

ci c j
cd2(φi,φ j) =

1
|φ|2

 

n
∑

i=1

ci

∑

x∈φi

∑

x ′∈φi

kX(x , x ′)

!

�

n
∑

j=1

c j

�

+
1
|ψ|2

�

n
∑

i=1

ci

�

 

n
∑

j=1

c j

∑

y∈φ j
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=−
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n
∑
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n
∑
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ci c j ξ(φi,φ j)

≤ 0 ,

where we used the fact that ξ(·, ·) is a p.d. kernel on NX. This concludes the proof.

6.4 Related Work

Classical diagnostic measures for point processes have largely been restricted to

temporal point processes. For spatial point processes, traditional approaches (Diggle,

2003) primarily rely on heuristic summary statistics (e.g., the ‘K-function’ of Ripley

(1976)) to test for specific properties of the data, such as complete randomness or

clustering.
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Related to our work, and also motivated by the GNZ formula, Baddeley et al. (2005)

defined the h-weighted residual measure for a parametric model bρ fitted to an observed

configuration φ on a bounded domain B ⊆ X:

γ(B, h, bρ) :=
∑

x∈φ∩B

h(x ,φ\{x})−
∫

B

h(u,φ) bρ(u|φ)du,

where h is a user-specified weight function. Informally, our proposed KSD goodness-of-

fit test statistic could be viewed as a kernelization of the h-weighted residuals, where

we take the supremum over all test functions h in an RKHS. In doing so, we obtain a

parsimonious and more powerful test capturing various aspects of the model intensity

that would have been difficult for any specific h to fully cover. In addition, the KSD test

allows users the flexibility to emphasize specific aspects of interest through the design

of the kernel function.

6.5 Empirical Evaluation

We apply the kernelized Stein discrepancy (KSD) test to the point process models

described in Section 2.2.2.5 We also compare with a test based on the maximum mean

discrepancy (MMD) (cf. Section 3.2), which draws samples from the null model, and

performs a two-sample test between the drawn samples and the observed data. Note

that here we are computing the MMD test statistic between two collections of point

configurations in NX, as opposed to Eq. (6.12) which estimates the MMD between two

sets of points in X. Given samples {Xi}mi=1, {Y j}mj=1 from two point processes ρ and η,

we compute the U-statistic estimate of MMD2(ρ,η):

ÙMMD2(ρ,η) :=
1

m(m− 1)

m
∑

i=1

m
∑

j 6=i

k(Xi,X j) +
1

m(m− 1)

m
∑

i=1

m
∑

j 6=i

k(Yi,Y j)

−
2

m2

m
∑

i=1

n
∑

j=1

k(Xi,Y j).

The critical value of the MMD test is calculated by bootstrapping on the aggregated data.

5Code for the experiments is available at https://github.com/jiaseny/stein-papangelou .

https://github.com/jiaseny/stein-papangelou
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Setup. We adopt a similar experiment setup as in Chapter 5. Denote the Papangelou

conditional intensities for the null and the alternative point process models by ρ and η,

respectively. For KSD, we draw m i.i.d. samples (point configurations) from η; for MMD,

we draw m samples from η and another m samples from ρ. For the kernel function k(·, ·)

on NX (used in both KSD and MMD), we utilize the M-kernel defined via Eqs. (6.11)

and (6.12), where the ground kernel kX(·, ·) in Eq. (6.12) is set to a Gaussian RBF kernel.

To ensure fair comparison, we set the bandwidth of the RBF kernel for both KSD and

MMD to the median pairwise distance (Gretton et al., 2012) of the aggregated points in

the samples drawn from η. We use em= 10,000 bootstrap samples for both methods.

For each model, we choose a single parameter, fix its value for the null model ρ,

and draw samples for η under different values of that parameter. For each value of the

chosen parameter and sample size m, we conduct 500 independent trials. In each trial,

we flip a fair coin to decide whether the alternative model η will be set to the same as ρ

or with a different value of the chosen parameter (in the former case, the null hypothesis

H0 : ρ = η should not be rejected, and in the latter case it should be). We conduct

the hypothesis test H0 : ρ = η vs. H1 : ρ 6= η under significance level α = 0.01, and

evaluate the performance of KSD and MMD in terms of their false-positive rate (FPR;

Type-I error) and false-negative rate (FNR; Type-II error).

Poisson process. We consider a Poisson process on the unit-square [0, 1]2 with intensity

function λ(x) = γ + ε sin(2π(x + y)), where γ is a base-rate, and ε represents the

perturbation magnitude. We fix γ= 50 throughout, vary the perturbation magnitude ε,

and test the hypotheses H0 : ε = 0 vs. H1 : ε 6= 0.

Hawkes process. We consider a Hawkes process on [0,1] with intensity function

given in Eq. (2.3) and set g(t) = βe−t/τ. We fix γ = 20 and β = 2 throughout, vary

the time-scale parameter τ, and test the hypotheses H0 : τ = 0.1 vs. H1 : τ 6= 0.1. To

simulate from a Hawkes process, we employ the thinning algorithm of Ogata (1981).

Strauss process. We consider Strauss processes on [0, 1]d (d = 1 or 2) with conditional

intensity given in Eq. (2.7). We fix β = 20 and γ= 0.8 (d = 1) or 0.9 (d = 2), vary the

interaction radius r and test the hypotheses H0 : r = r0 vs. H1 : r 6= r0 with r0 = 0.2 or
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0.3. To simulate from a 1-D Strauss process, we apply rejection sampling to realizations

of a Poisson process with intensity β . To simulate from a 2-D Strauss process, we use

the MCMC sampler provided in the R package spatstat (Baddeley and Turner, 2005;

Baddeley et al., 2015).

Results. In Figure 6.1, the top row plots the testing error rate vs. different values of

the parameter we chose to vary for η, under a given sample size. The bottom row plots

the error rate vs. sample size for a specific value of the chosen parameter. We observe

that both methods generally maintain a false-positive rate (Type-I error) around the

significance level, while KSD consistently achieves lower false-negative rate (Type-II

error) than MMD across different parameter settings as well as sample sizes.6 This

indicates that KSD, by utilizing information from the Papangelou conditional intensity

ρ of the null model, gives rise to a more powerful test. We emphasize that the MMD

two-sample test requires generating exact samples from the null model, which could

be computationally costly or intractable. Finally, we note that the statistical power of

both methods could be improved by using more sophisticated constructions of kernel

functions on the space of counting measures, which we leave for future work.

6.6 Summary

We have introduced a general Stein operator based on the Papangelou conditional

intensity for point processes which can be evaluated even when the intensity function

contains an intractable normalization constant. Using the proposed Stein operator, we

have developed a kernelized Stein discrepancy test for measuring the goodness-of-fit

of a point process model. We have applied the proposed test to several point process

models, and showed that it outperforms a two-sample test based on the maximum mean

discrepancy, which assumes the availability of exact samples from the null model.

6In Figure 6.1d, the Type-I error for KSD appears slightly higher than the nominal significance level 0.01.
We found that this was due to numerical quadrature error involved in evaluating Eq. (6.8) under limited
computational budget (since the double-integral over X is now four-dimensional). This issue could be
alleviated using Monte Carlo integration techniques, which shall be investigated in future work.
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7. CONCLUSION AND FUTURE DIRECTIONS

In this dissertation, we developed statistical models and model-criticism techniques

for learning from data exhibiting relational, temporal, and/or spatial dependencies.

On the one hand, we proposed latent space point process models to decouple the

influences of homophily and reciprocity from dynamic interactions in communication

networks. On the other hand, we developed goodness-of-fit tests for discrete distributions

(including network models) and point processes involving intractable normalization

constants, provide the first generally applicable and computationally feasible model-

criticism approaches under those circumstances. In this chapter, we summarize the

contributions of this dissertation, and outline several avenues for future research.

7.1 Summary of Contributions

The contributions of this dissertation fall into the following aspects:

Theoretical

• In Chapter 5, we proposed:

– A difference Stein operator for discrete spaces;

– A general characterization of Stein operators that encompasses both discrete and

continuous distributions, with a recipe for constructing new Stein operators; and

– A kernelized discrete Stein discrepancy measure for discrete distributions, including

those containing intractable normalization constants.

• In Chapter 6, we constructed:

– A Stein–Papangelou operator for general point processes based on the Papangelou

conditional intensity function;
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– A positive-definite kernel on the space of point configurations using the maximum

mean discrepancy; and

– A kernelized Stein discrepancy measure for general point processes, including

those with intractable intensity functions.

Methodological

• In Chapter 4, we developed:

– A collection of latent space point process models, including a Poisson process latent

space model, two single-latent space Hawkes process models, and a dual-latent

space model, to capture and decouple the influences of homophily and reciprocity

in temporal interactions; and

– Methodology to evaluate the proposed models, including static and dynamic link

prediction tasks, as well as exploration of the learned node embeddings.

• In Chapters 5 and 6, we developed:

– A nonparametric goodness-of-fit test for unnormalized discrete distributions (in-

cluding network models) based on the kernelized discrete Stein discrepancy; and

– A nonparametric Stein–Papangelou goodness-of-fit test for general point processes

(including those with intractable intensity functions).

These goodness-of-fit tests provide the first generally applicable and computationally

feasible model-criticism approaches under the aforementioned circumstances.

Empirical

• In Chapter 4, we

– Evaluated the utility of our models both quantitatively and qualitatively on three

real-world datasets; and

– Showed that incorporating both homophily and reciprocal latent spaces improves

predictive performance and gives rise to interpretable embeddings.

• In Chapter 5, we
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– Applied our kernelized discrete Stein discrepancy goodness-of-fit test to the Ising

model, the Bernoulli restricted Boltzmann machine, and the exponential random

graph model; and

– Demonstrated that the proposed test typically outperforms a two-sample test based

on the maximum mean discrepancy in terms of power while maintaining control

on false-positive rate.

• In Chapter 6, we

– Applied our Stein–Papangelou goodness-of-fit test to the Poisson process, the

Hawkes process, and the Strauss process; and

– Demonstrated that the proposed test outperforms a two-sample test based on

the maximum mean discrepancy in terms of power while maintaining control on

false-positive rate.

7.2 Future Directions

7.2.1 Stein’s Method for Model Criticism and Bayesian Inference

The complexity of modern statistical and machine learning models typically cul-

minates in likelihood functions containing intractable normalization constants, which

preclude the use of conventional model criticism techniques and bring about challenges

in performing inference for those models. As we have examined in Chapters 5 and 6.

Stein’s method provides a principled framework for developing goodness-of-fit tests

and model criticism techniques under this scenario. Interestingly, the concept of Stein

discrepancy can also be applied to develop a novel approach for approximate Bayesian

inference in complex probabilistic models, providing an efficient and accurate alternative

to conventional MCMC and variational methods.
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Flexible, Interpretable, and Scalable Techniques for Model Criticism

Much progress remains to be made toward enhancing the flexibility, effectiveness,

and scalability of existing model criticism techniques.

First, current Stein discrepancy tests could not be applied directly to models with

latent variables, as their likelihood function involves marginalizing over these variables.

However, many widely used models, such as probabilistic topic models (Blei et al.,

2003), stochastic blockmodels (cf. Chapter 2), and the latent space models we studied

in Chapter 4, fall into this category.

Second, current tests do not exploit specific structure in the data or model. For

kernelized Stein discrepancy tests, their statistical power depends heavily on the choices

of the Stein operator and the kernel function. For model distributions with additional

structure (e.g., conditional independencies encoded in a graphical model), one could

design appropriate Stein operators and factorized kernel functions that exploit such

structure to establish more powerful tests. Special care also needs to be taken when the

distribution is supported on a highly constrained domain or manifold.

Third, variants of the kernelized Stein discrepancy statistic could be used to construct

interpretable features (Jitkrittum et al., 2017, 2018) that reveal aspects of the data which

the current model fails to capture, pointing out ways to improve the model fit. Future

work along this direction is important for the development of interpretable diagnostic

and criticism techniques for complex models.

Fourth, kernel-based hypothesis tests require the computation of a Gram matrix with

cost quadratic in the number of data samples, which could become prohibitive for large

datasets. While this computation is amenable to parallelization, more efficient tests

that run in near-linear time could be obtained by sketching the kernel matrix (via e.g.,

element-wise sampling (Achlioptas and Mcsherry, 2007), the Nyström method (Drineas

and Mahoney, 2005), or random Fourier features (Rahimi and Recht, 2008)). By

exploiting the special structure of positive semi-definite matrices, one could further

develop improved approximation guarantees for the kernel-based test statistic.
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Finally, practical considerations such as data censoring in survival analysis and

differential privacy constraints present new challenges in the design of effective model

criticism techniques. The recent work of Fernández and Gretton (2019) takes a step

toward this direction.

Stein’s Method for Approximate Bayesian Inference

Viewed as a distance measure between data samples and a model distribution, the

kernelized Stein discrepancy statistic also provides a method to sample from a potentially

intractable Bayesian posterior distribution (such as those arising from Bayesian neural

networks), presenting an efficient and accurate alternative to conventional MCMC and

variational methods. Specifically, one starts by randomly initializing a set of particles,

and then iteratively refines these particles to minimize the discrepancy between their

empirical distribution and the target distribution. when the particles are added in a

greedy fashion, the optimization procedure could be carried out using an instance of the

Frank–Wolfe algorithm known as kernel herding (Chen et al., 2010, 2018). A related

idea is the Stein variational gradient descent algorithm of Liu and Wang (2016), which

iteratively minimizes the KL divergence between the particles and the target distribution.

In future work, one could explore similar algorithms for sampling from network models

and point processes with intractable normalization constants, as computationally efficient

alternatives to MCMC methods.

7.2.2 Invariance Principles for Networks and Point Processes

The study of networks models and point provides hinges upon fundamental sym-

metry and invariance principles in probability theory. Understanding the properties

and limitations implied by these invariance principles is crucial for gaining a deeper

understanding of these models, and also provides valuable insights for the development

of new sampling, learning, and inference algorithms. While distinct in terms of their

application domains, networks and point processes share many common characteristics
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in terms of the invariance principles governing them. In particular, Caron and Fox (2017)

introduced a point process representation of sparse graphs using exchangeable random

measures; an immediate direction of future work is to construct Stein operators and

goodness-of-tests for sparse graphs under this representation by building upon our devel-

opment in Chapter 6. Other related topics include kernel methods for permutations (Jiao

and Vert, 2015) and Fourier analysis on the symmetric group (Clausen and Baum, 1993;

Kondor, 2008).
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A. APPENDIX TO CHAPTER 4

A.1 MAP Estimation Details

As described in subSection 4.3.3, we perform maximum a posteriori (MAP) inference

to estimate the parameters in all the discussed models. In this subsection, we present

the MAP estimation details for the HP and DLS models by deriving the closed form

expressions of the log-posterior function and its gradients; the optimization can then be

carried out using L-BFGS-B (Byrd et al., 1995). The derivations for the PLS, BLS, RLS

models follow analogously, since they can all be viewed as degenerate cases of the DLS

model.

Before presenting the MAP estimation details, recall that the observed data {(u, v,Huv)}u,v∈V

are collected over a time period [0, T ), where Huv := {tuv
i }

nuv
i=1 records the set of all time-

points at which u sent v a message.

A.1.1 Hawkes Process (HP) Model

Recall the Hawkes Process (HP) model:

λuv(t) = γ+
∑

k: t vu
k <t

B
∑

b=1

ξbφb(t − t vu
k ) ∀u 6= v

Nuv(·)∼ HawkesProcess(λuv(·)) ∀u 6= v

Notice that

Λuv(0, T ) =

∫ T

0

λuv(t)dt = γ T +
B
∑

b=1

ξb

nvu
∑

k=1

�

Φb(T − t vu
k )−Φb(0)

�

where Φb(t) :=
∫ t

0
φb(s)ds.
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Placing Gamma(1, 1) priors on γ and each ξb, and denoting ξ := {ξb}Bb=1, the joint

density can be written as

p({Huv}nu,v=1,γ,ξ)∝
n
∏

u,v=1
u6=v

¨

e−Λuv(0,T )
nuv
∏

k=1

λuv(t
uv
i ) · e

−γ ·
B
∏

b=1

e−ξb

«

and the log-posterior function is given by

log p(γ,ξ | {Huv}nu,v=1) =
n
∑

u,v=1
u6=v

¨

−Λuv(0, T ) +
nuv
∑

i=1

logλuv(t
uv
i )

«

− γ−
B
∑

b=1

ξb

=
n
∑

u,v=1
u6=v

¨

−γ T −
B
∑

b=1

ξb∆
vu
b,T +

nuv
∑

i=1

log

�

γ+
B
∑

b=1

ξb δ
uv
b,i

�«

− γ−
B
∑

b=1

ξb

where 〈·, ·〉 denotes the Euclidean inner-product, and we have adopted the shorthand

notations

∆vu
b,T :=

nvu
∑

k=1

�

Φb(T − t vu
k )−Φb(0)

�

δuv
b,i :=

∑

k: t vu
k <tuv

i

φb(t
uv
i − t vu

k )

to denote data statistics that can be pre-computed and cached for each pair of nodes

u, v ∈ V and kernel φb.

The gradients of the log-posterior are given by

∂ log p
∂ γ

=− (n2 − n) T +
n
∑

u,v=1
u6=v

nuv
∑

i=1

�

γ+
B
∑

b=1

ξb δ
uv
b,i

�−1

− 1

∂ log p
∂ ξb

=
n
∑

u,v=1
u6=v



−∆vu
b,T +

nuv
∑

i=1

δuv
b,i

�

γ+
B
∑

b=1

ξb δ
uv
b,i

�−1
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A.1.2 Hawkes Dual Latent Space (DLS) Model

Recall the Hawkes Dual Latent Space (DLS) model:

zv ∼N (0,σ2 Id×d) ∀v ∈ V
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µv ∼N (0,σ2
µ

Id×d) ∀v ∈ V

ε(b)v ∼N (0,σ2
ε
Id×d) ∀v ∈ V, b = 1, . . . , B

x (b)v ∼ µv + ε
(b)
v ∀v ∈ V, b = 1, . . . , B

λuv(t) = γ e−‖zu−zv‖22 +
∑

k: t vu
k <t

B
∑

b=1

β e−‖x
(b)
u −x (b)v ‖

2
2 φb(t − t vu

k )

Nuv(·)∼ HawkesProcess(λuv(·)) ∀u 6= v

Placing Gamma(1, 1) priors on γ and β , setting σ2 = σ2
µ
= σ2

ε
= 1, and integrating out

{µv}nv=1, the log-density function can be written as

log p(γ,β , {zv}nv=1, {{x (b)v }
B
b=1}

n
v=1 | {Huv}nu,v=1)

=
n
∑

u,v=1
u 6=v

�
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∆vu
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2
2
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2
2

��

−
1
2

n
∑

v=1

B
∑

b=1
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2 +

B2

2 (B + 1)

n
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‖x̄ v‖
2
2 −

1
2

n
∑

v=1

‖zv‖2
2 − γ− β

where x̄ v := 1
B

∑B
b=1 x (b)v denotes the mean latent position of node v across all basis-

kernels.

The gradients of the log-posterior are given by

∂ log p
∂ γ

=
n
∑

u,v=1
u6=v

�

−T e−‖zu−zv‖22 +
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where

h(u, v, i) := γ e−‖zu−zv‖22 + β
B
∑

b=1

δuv
b,i e−‖x

(b)
u −x (b)v ‖

2
2

r(u, v, b) := −∆vu
b,T +

nuv
∑

i=1

δuv
b,i h−1(u, v, i) .

A.2 Additional Experiment Results

A.2.1 Further Experiment on Static Link Prediction

In Section 4.4.3, we noted that the experiment setup for the static link prediction

task did not yield standard errors for the AUC scores reported in Table 4.3, since there

was only one training/test split. To investigate the statistical significance of the results,

we conducted a follow-up experiment.

For each dataset, we computed confidence intervals by performing six trials on

subsets of the data. Specifically, in the i-th trial, we let the training set to contain all

events during the period between the
�

i−1
10

�

-th and the
�

i+2
10

�

-th event, and the test set

to contain all events during the period between the
�

i+2
10

�

-th and
�

i+4
10

�

-th event. In this

way, each trial used 30% training data and 20% test data, with the training and test

data being non-overlapping.1 As in Section 4.4.3, we fitted the model on the training

set, and performed link prediction on the test set. The results are shown in Table A.1.2

By conducting two-sided t-tests at the 95% confidence level, we conclude that while

DLS significantly outperforms node2vec on ENRON, their performance differences on

EMAIL and FACEBOOK are not significant.

1Notice, however, that the training/test data across different trials may share common observations.
Thus, strictly speaking, the trials are not independent, and the computed standard error estimates might
under-estimate the "true" associated uncertainty.
2Note that the overall performance for all methods are slightly degraded since we are only using subsets
of the data.



128

Table A.1.: Static link prediction AUC scores and standard deviations.

Model ENRON EMAIL FACEBOOK

PLS 0.510 (0.009) 0.496 (0.015) 0.491 (0.013)

BLS 0.510 (0.009) 0.496 (0.015) 0.491 (0.013)

RLS 0.439 (0.073) 0.386 (0.081) 0.456 (0.055)

DLS 0.864 (0.016) 0.934 (0.016) 0.892 (0.040)

Spectral 0.516 (0.020) 0.526 (0.032) 0.492 (0.021)

node2vec 0.749 (0.050) 0.953 (0.007) 0.935 (0.033)

A.2.2 Visualization of the Inferred Node-Similarity Matrices

We visualize the estimated homophily and reciprocal latent spaces of the DLS model

by computing the pair-wise similarities e−‖zu−zv‖22 for every pair of nodes u, v ∈ V , and

then plotting a heat-map of the inferred similarity matrices. Figure A.1 shows the heat-

maps (colors on log-scale) for both the homophily latent space and the reciprocal latent

spaces corresponding to the hourly (φ1), daily (φ2), weekly (φ3) exponential kernels

and the weekly locally periodic kernel (φ4) on all three datasets. For each similarity

matrix, we performed hierarchical clustering on the rows to obtain a node-ordering and

accordingly permuted the rows and columns of the matrix simultaneously. Notice that

the similarity matrices exhibit different clustering block-structures, indicating that the

user-interaction patterns are quite different across the homophily and reciprocal latent

spaces with different kernels and time-scales.
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B. APPENDIX TO CHAPTER 6

For concreteness, we provide an example Python implementation of Eq. (6.8).

def kernel(X, Y):

"""

Evaluates a kernel function for two point -sets X and Y.

Args:

X, Y: numpy arrays of shape (_,d), collections of d-dimensional points.

Returns:

float , value of k(X, Y).

"""

def papangelou(u, X):

"""

Evaluates the Papangelou conditional intensity (u|X) of a point process

at location u given observed point -set X.

Args:

u: numpy array of shape (d,), a location in the ground space.

X: numpy array of shape (n, d), the given point -set.

Returns:

float , value of rho(u|X).

"""

def integrate(func , domain):

"""

Integrates a (univariate or multivariate) function func over domain.

See scipy.integrate for a list of numerical integration routines.

Args:

func: function , a univariate or multivariate function.

domain: list of lists , the integration ranges for each variable.

Returns:

float , value of the definite integral.

"""

def kappa(X, Y, domain):

"""

Evaluates Eq.(12) for point -sets X and Y using kernel () and papangelou ().

Args:

X, Y: numpy arrays of shape (_,d), collections of d-dimensional points.
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domain: list of lists , ranges specifying the ground space.

Returns:

float , value of kappa(X, Y).

"""

n = X.shape[0]

m = Y.shape[0]

k = kernel(X, Y)

k_X = sum(kernel(np.delete(X, i, axis=0), Y) for i in xrange(n))

k_Y = sum(kernel(X, np.delete(Y, j, axis=0)) for j in xrange(m))

k_X_Y = sum(kernel(np.delete(X, i, axis=0), np.delete(Y, j, axis=0))

for i in xrange(n) for j in xrange(m))

def integrand_uv(u, v):

# Double integrand over u and v

k_uv = kernel(np.vstack ((X, u)), np.vstack ((Y, v)))

k_v = kernel(X, np.vstack ((Y, v)))

k_u = kernel(np.vstack ((X, u)), Y)

c_u = papangelou(u, X)

c_v = papangelou(v, Y)

return (k_uv - k_v - k_u + k) * c_u * c_v

def integrand_v(v):

# Integrand over v

k_X_v = sum(kernel(np.delete(X, i, axis=0), np.vstack ((Y, v)))

for i in xrange(n))

k_v = kernel(X, np.vstack ((Y, v)))

c_v = papangelou(v, Y)

return (( k_X_v - k_X) - n*(k_v - k)) * c_v

def integrand_u(u):

# Integrand over u

k_Y_u = sum(kernel(np.vstack ((X, u)), np.delete(Y, j, axis=0))

for j in xrange(m))

k_u = kernel(np.vstack ((X, u)), Y)

c_u = papangelou(u, X)

return (( k_Y_u - k_Y) - m*(k_u - k)) * c_u

# Compute integrals

term1 = integrate(integrand_uv , domain)

term2 = integrate(integrand_v , domain)

term3 = integrate(integrand_u , domain)

term4 = k_X_Y - n*k_Y - m*k_X + m*n*k

return term1 + term2 + term3 + term4
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