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Abstract
Recent work has combined Stein’s method with
reproducing kernel Hilbert space theory to de-
velop nonparametric goodness-of-fit tests for un-
normalized probability distributions. However,
the currently available tests apply exclusively to
distributions with smooth density functions. In
this work, we introduce a kernelized Stein dis-
crepancy measure for discrete spaces, and develop
a nonparametric goodness-of-fit test for discrete
distributions with intractable normalization con-
stants. Furthermore, we propose a general char-
acterization of Stein operators that encompasses
both discrete and continuous distributions, pro-
viding a recipe for constructing new Stein op-
erators. We apply the proposed goodness-of-fit
test to three statistical models involving discrete
distributions, and our experiments show that the
proposed test typically outperforms a two-sample
test based on the maximum mean discrepancy.

1. Introduction
Goodness-of-fit testing is a central problem in statistics,
measuring how well a model distribution p(x) fits observed
data {xi}ni=1 ⊆ X d, for some domain X (e.g., X ⊆ R for
continuous data or X ⊆ N for discrete data). Examples of
classical goodness-of-fit tests include the χ2 test (Pearson,
1900), the Kolmogorov-Smirnov test (Kolmogorov, 1933;
Smirnov, 1948), and the Anderson-Darling test (Anderson &
Darling, 1954). These tests typically assume that the model
distribution p(x) is fully specified and is easy to evaluate.
In modern statistical and machine learning applications,
however, p(x) is often specified only up to an intractable
normalization constant; examples include large-scale graph-
ical models, latent variable models, and statistical models
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for network data. While a variety of approximate inference
techniques such as pseudo-likelihood estimation, Markov
chain Monte Carlo (MCMC), and variational methods have
been studied to allow learning and inference in these mod-
els, it is usually hard to quantify the approximation errors
involved, making it difficult to establish statistical tests with
calibrated uncertainty estimates.

Recently, a new line of research (Gorham & Mackey, 2015;
Oates et al., 2017; Chwialkowski et al., 2016; Liu et al.,
2016; Gorham & Mackey, 2017; Jitkrittum et al., 2017) has
developed goodness-of-fit tests which work directly with
un-normalized model distributions. Central to these tests
is the notion of a Stein operator, originating from Stein’s
method (Stein, 1986) for characterizing convergence in dis-
tribution. Given a distribution p(x) on X d and a class of
test functions f ∈ F on X d, a Stein operator Ap satisfies
Ex∼p [Apf(x)] = 0, so that when Ap is applied to any test
function f , the resulting function Apf has zero-expectation
under p. Additionally, the expectation under any other distri-
bution q 6= p should be non-zero for at least some function
f in F . When F is sufficiently rich, the maximum value
supf∈F Ex∼q [Apf(x)] serves as a discrepancy measure,
called Stein discrepancy, between distributions p and q.

The properties of the Stein discrepancy measure depends
on two objects: the Stein operator Ap, and the set F . Dif-
ferent authors have studied different choices of F : Gorham
& Mackey (2015) considered test functions in the W2,∞

Sobolev space, and the resulting test statistic requires solv-
ing a linear program under certain smoothness constraints.
On the other hand, Oates et al. (2017); Chwialkowski et al.
(2016); Liu et al. (2016) proposed taking F to be the unit
ball of a reproducing kernel Hilbert space (RKHS), which
leads to test statistics that can be computed in closed form
and with time quadratic in n, the number of samples. Jitkrit-
tum et al. (2017) further proposed a linear-time adaptive test
that constructs test features by optimizing test power.

Regarding the choice of the Stein operator Ap, all the afore-
mentioned works consider the case when X ⊆ R is a con-
tinuous domain, p(x) is a smooth density on X d, and the
Stein operator is defined in terms of the score function of p,
sp(x) = ∇ log p(x) = ∇p(x)/p(x), where ∇ is the gradient
operator. Observe that any normalization constant in p can-
cels out in the score function, so that if the Stein operatorAp
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depends on p only through sp, then the discrepancy measure
supf∈F Ex∼q [Apf(x)] can still be computed when p is un-
normalized. However, constructing the Stein operator using
the gradient becomes restrictive when one moves beyond
distributions with smooth densities. For discrete distribu-
tions, even in the simple case of Bernoulli random variables,
none of the aforementioned tests apply, since the probability
mass function is no longer differentiable. This motivates
more general constructions of tests based on Stein’s method
that would also be applicable to discrete domains.

In this work, we focus on the case where X is a finite set.
The model distribution p(x) is a probability mass function
(pmf), whose normalization constant is computationally
intractable. We note that examples of such intractable dis-
crete distributions abound in statistics and machine learn-
ing, including the Ising model (Ising, 1924) in physics, the
(Bernoulli) restricted Boltzmann machine (RBM) (Hinton
& Salakhutdinov, 2006) for dimensionality reduction, and
the exponential random graph model (ERGM) (Holland &
Leinhardt, 1981) in statistical network analysis.

Our primary contribution is in establishing a kernelized
Stein discrepancy measure between discrete distributions,
using an appropriate choice of Stein operators for discrete
spaces. Then, adopting a similar strategy as Chwialkowski
et al. (2016); Liu et al. (2016), we develop a nonparametric
goodness-of-fit test for discrete distributions. Notably, the
proposed test also applies to discrete distributions that were
previously not amenable to classical tests due to the pres-
ence of intractable normalization constants. Furthermore,
we propose a general characterization of Stein operators
that encompasses both discrete and continuous distributions,
providing a recipe for constructing new Stein operators. For
any Stein operator constructed as such, we could then de-
fine a kernelized Stein discrepancy measure to establish a
valid goodness-of-fit test. Finally, we apply our proposed
goodness-of-fit test to the Ising model, the Bernoulli RBM,
and the ERGM, and our experiments show that the proposed
test typically outperforms a two-sample test based on the
maximum mean discrepancy (Gretton et al., 2012) in terms
of power while maintaining control on false-positive rate.

Outline. Section 2 introduces notation and preliminaries.
We construct and characterize discrete Stein operators in
Section 3, establish the kernelized discrete Stein discrep-
ancy measure in Section 4, and describe the goodness-of-fit
testing procedure in Section 5. We apply the proposed test
in experiments on several statistical models in Section 7,
discuss related work in Section 6, and conclude in Section 8.
All omitted results and proofs can be found in the Appendix.

2. Notation and Preliminaries
We primarily focus on domains X of finite cardinality |X |.
A probability mass function (pmf) p supported on X d is

said to be positive if p(x) > 0 for all x ∈ X d. A sym-
metric function k(·, ·) is a positive definite kernel on X d
if the Gram matrix K = [k(xi,xj)]

n
i,j=1 is positive semi-

definite for any n ∈ N and {x1, . . . ,xn} ⊆ X d. The kernel
is strictly positive definite if K is positive definite. By
the Moore-Aronszajin theorem, every such kernel k has
a unique reproducing kernel Hilbert space (RKHS) H of
functions f : X d → R satisfying the reproducing property:
for any f ∈ H, f(x) = 〈f(·), k(·,x)〉H (and in particu-
lar, k(x,x′) = 〈k(·,x), k(·,x′)〉H). More generally, let
Hm = H×H · · · × H denote the Hilbert space of vector-
valued functions f = {f` : f` ∈ H}m`=1, endowed with the
inner-product 〈f ,g〉Hm =

∑m
`=1 〈f`, g`〉H for f = {f`}m`=1

and g = {g`}m`=1, and norm ‖f‖Hm =
√∑m

`=1 ‖f`‖2H.

3. Discrete Stein Operators
We first propose a simple Stein operator for discrete dis-
tributions, and then provide a general characterization of
Stein operators for both the discrete and continuous cases.
In particular, we draw upon ideas in the literature on score-
matching methods (Hyvärinen, 2005; 2007; Lyu, 2009;
Amari, 2016), which we elaborate on further in Section 6.

3.1. Difference Stein Operator

Definition 1 (Cyclic permutation). For a set X of finite car-
dinality, a cyclic permutation ¬ : X → X is a bijective func-
tion such that for some ordering x[1], x[2], . . . , x[|X |] of the
elements in X , ¬x[i] = x[(i+1) mod |X |], ∀i = 1, 2, . . . , |X |.

Thus, starting with any element of x, repeated appli-
cation of the ¬ operator generates the set X : X =
{x,¬x, . . . ,¬(|X |−1)x}. In the simplest case, when X is
a binary set, one can take X = {±1} and define ¬x = −x.

The inverse permutation of ¬ is an operator ⨼ : X → X that
satisfies ¬(⨼x) = ⨼(¬x) = x for any x ∈ X . Under the
ordering of Definition 1, we have ⨼x[i] = x[(i−1) mod |X |].
It is easy to verify that ⨼ is also a cyclic permutation on X .
When X is a binary set, the inverse of ¬ is itself: ⨼ = ¬.
Definition 2 (Partial difference operator and difference
score function). Given a cyclic permutation ¬ on X , for
any vector x = (x1, . . . , xd)

T ∈ X d, write ¬ix :=
(x1, . . . , xi−1,¬xi, xi+1, . . . , xd)

T. For any function f :
X d → R, denote the (partial) difference operator as

∆xif(x) := f(x)− f(¬ix), i = 1, . . . , d,

and write ∆f(x) = (∆x1
f(x), . . . ,∆xd

f(x))T. Define
the (difference) score function as sp(x) := ∆p(x)/p(x), with

(sp(x))i =
∆xi

p(x)

p(x)
= 1− p(¬ix)

p(x)
, i = 1, . . . , d. (1)

We will also be interested in the difference operator defined
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with respect to the inverse permutation ⨼. To avoid clutter-
ing notation, we shall use ∆ and sp to denote the difference
operator and score function defined with respect to ¬, and
use ∆∗ to denote the difference operator with respect to ⨼:

∆∗xi
f(x) := f(x)− f(⨼ix), i = 1, . . . , d.

As in the continuous case, the score function sp(x) can be
easily computed even if p is only known up to a normal-
ization constant: if p(x) = p̃(x)/Z, then sp(x) = ∆p̃(x)/p̃(x)

does not depend on Z. For an exponential family distribu-
tion p with base measure h(x), sufficient statistics φ(x),
and natural parameters θ: p(x) = 1

Z(θ)h(x) exp{θTφ(x)},
the (difference) score function is given by

(sp(x))i = 1− h(¬ix)

h(x)
exp{θT(φ(¬ix)− φ(x))}. (2)

In the continuous case, it was obvious that two densities p
and q are equal almost everywhere if and only if their score
functions are equal almost everywhere. This still holds for
the difference score function, but its proof is less trivial.

Theorem 1. For any positive pmfs p and q on X d, we have
that sp(x) = sq(x) for all x ∈ X d if and only if p = q.

Proof sketch. Clearly, p = q implies that sp(x) = sq(x)
for all x ∈ X d. For the converse, by Eq. (1), sp(x) = sq(x)
implies that p(¬ix)/p(x) = q(¬ix)/q(x) for all x and i. Using
the fact that ¬ is a cyclic permutation onX , we can show that
all the singleton conditional distributions of p and q must
match, i.e., p(xi|x−i) = q(xi|x−i) for all xi and i, where
x−i := (x1, . . . , xi−1, xi+1, . . . , xd) (see the Appendix for
details). By Brook’s lemma (Brook, 1964; see Lemma 9 in
the Appendix), the joint distribution is fully specified by the
collection of singleton conditional distributions, and thus
we must have p(x) = q(x) for all x ∈ X d.

In the literature on score functions (Hyvärinen, 2007; Lyu,
2009), such results, showing that a score function sp(x)
uniquely determines a probability distribution, are called
completeness results. For our purposes, such completeness
results provide a basis for establishing statistical hypothe-
sis tests to distinguish between two distributions. We first
introduce the concept of a difference Stein operator.

Definition 3 (Difference Stein operator). Let ¬ be a cyclic
permutation on X and let ⨼ be its inverse permutation. For
any function f : X d → R and pmf p on X d, define the
difference Stein operator of p as

Apf(x) := sp(x)f(x)−∆∗f(x), (3)

where sp(x) = ∆p(x)/p(x) is the difference score function
defined w.r.t. ¬, and ∆∗ is the difference operator w.r.t. ⨼.

We note that any intractable normalization constant in p
cancels out in evaluating the Stein operator Ap. The Stein
operator satisfies an important identity:

Theorem 2 (Difference Stein’s identity). For any function
f : X d → R and probability mass function p on X d,

Ex∼p [Apf(x)] = Ex∼p [sp(x)f(x)−∆∗f(x)] = 0. (4)

Proof. Notice that

Ex∼p [Apf(x)] =
∑

x∈Xd

[f(x)∆p(x)− p(x)∆∗f(x)] .

To complete the proof, simply note that for each i,∑
x∈Xd

f(x)∆xi
p(x) =

∑
x∈Xd

f(x)p(x)−
∑

x∈Xd

f(x)p(¬ix),

∑
x∈Xd

p(x)∆∗xi
f(x) =

∑
x∈Xd

p(x)f(x)−
∑

x∈Xd

p(x)f(⨼ix).

The two equations are equal since ¬ and ⨼ are inverse cyclic
permutations on X , with ¬i(⨼ix) = ⨼i(¬ix) = x.

Finally, we can extend the definition of the difference Stein
operator to vector-valued functions f : X d → Rm. In this
case, ∆f is an d×m matrix with (∆f)ij = ∆xi

fj(x), and
the Stein operator takes the form

Apf(x) = sp(x) f(x)T −∆∗f(x).

Similar to Theorem 2, one can show that for any function
f : X d → Rm and positive pmf p on X d,

Ex∼p [Apf(x)] = Ex∼p
[
sp(x) f(x)T −∆∗f(x)

]
= 0.

If m = d, taking the trace on both sides yields

Ep [tr (Apf(x))] = Ep
[
sp(x)Tf(x)− tr (∆∗f(x))

]
= 0.

3.2. Characterization of Stein Operators

Generalizing our construction in the previous section, we
can further identify a broad class of Stein operators which
includes the difference Stein operator as a special case.

Let L be any operator defined on the space of functions
F = {f : X d → R} that can be written in the form1

Lf(x) =
∑

x′∈Xd

g(x,x′)f(x′), ∀f ∈ F (5)

for some bivariate (possibly vector-valued) function g on
X d ×X d. Define a dual operator L∗ via

L∗f(x) =
∑

x′∈Xd

g(x′,x)f(x′), ∀f ∈ F . (6)

1The notion can also be extended to vector-valued functions f ;
we omit this generalization here for clarity.
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In fact, when X is a finite set, any linear operator L on
F = {f : X d → R} can be written in the form of Eq. (5).
In this case, the operator L∗ as defined in Eq. (6) is the
adjoint operator of L: 〈Lf, g〉 = 〈f,L∗g〉 for all f, g ∈ F ,
where 〈·, ·〉 is the appropriate inner-product on X d. If g(·, ·)
is symmetric, then L is self-adjoint, i.e., L∗ = L.

Under these definitions, we have the following result which
characterizes the Stein operators on a discrete space X d.

Theorem 3. Denote F = {f : X d → R}. For any positive
pmf p on X d, a linear operator Tp satisfies Stein’s identity

Ex∼p [Tpf(x)] = 0 (7)

for all functions f ∈ F if and only if there exist linear
operators L and L∗ of the forms (5) and (6), such that

Tpf(x) =
Lp(x)

p(x)
f(x)− L∗f(x) (8)

holds for all x ∈ X d and functions f ∈ F .

Proof. Sufficiency: Suppose the linear operators L and L∗
take the forms of Eqs. (5) and (6) for some function g, we
show that the operator Tp defined via Eq. (8) satisfies Stein’s
identity of Eq. (7). We can write

Ep [Tpf(x)] =
∑

x∈Xd

[f(x)Lp(x)− p(x)L∗f(x)]

=
∑

x∈Xd

∑
x′∈Xd

f(x)g(x,x′)p(x′)

−
∑

x∈Xd

∑
x′∈Xd

p(x)g(x′,x)f(x′) .

The two terms in the last line cancel out since the double-
summations are invariant under a swapping of summation
indices x and x′, giving Ep [Tpf(x)] = 0.

Necessity: See the Appendix for the remaining proof.

We note that the sufficiency part of Theorem 3 remains valid
when X is a continuous space, p is a density, F ⊆ {f :
X d → R} is some family of functions for which Tpf and
Lf are well-defined, and the summations in Eqs. (5) and (6)
are replaced by integrations. However, the necessity part
requires further conditions on the expressiveness of F .

Theorem 3 essentially states that (for a fixed p) given any
pair of adjoint operators L and L∗, one can construct a lin-
ear operator Tp satisfying Stein’s identity; conversely, any
Stein operator Tp can be expressed using a pair of adjoint
operators L and L∗. This connection between adjoint oper-
ators and Stein operators enables us to unify different forms
of Stein operators for discrete and continuous distributions
(see also Ley et al. (2017) for related discussions).

Remark 4 (Continuous case). For a continuous space X ⊆
R, consider a smooth density p onX d. TakeL = ∇ to be the
gradient operator, and let F consist of smooth functions f :
X d → R for which f(x) p(x) vanishes at the boundary ∂X .
Using integration-by-parts, it can be shown that the adjoint
operator of L is L∗ = −∇. Then, applying Eq. (8) of
Theorem 3 recovers the standard continuous Stein operator

Apf(x) = ∇ log p(x)f(x) +∇f(x).

Remark 5 (Discrete case). In Eqs. (5) and (6), define the
vector-valued function g : X d ×X d → Rd with

(g(x,x′))i = I{x′ = x} − I{x′ = ¬ix} (9)

where I{·} is the indicator function. Then, we have

(Lf(x))i =
∑

x∈Xd

(g(x,x′))if(x) = f(x)− f(¬ix),

which recovers the difference operator ∆. Similarly, define
g∗ by replacing ¬ with its inverse permutation ⨼ in Eq. (9).
Notice that g(x,x′) = g∗(x′,x), and thus the adjoint of L
is given by L∗ = ∆∗. In this case, Eq. (8) boils down to the
difference Stein operator defined in Eq. (3).

Note that if X is binary, then ¬ = ⨼, and L is self-adjoint.
When L is self-adjoint, in addition to Stein’s identity, the
Stein operator defined via Eq. (8) also satisfies Tp p(x) = 0.

Graph-based discrete Stein operators. Extending the
form of Eq. (9), we can obtain a more general recipe for
constructing g, which, upon applying Theorem 3, gives
rise to other Stein operators on X d. Specifically, suppose
we have identified a simple graph G = (X d, E) on |X |d
vertices, with each vertex corresponding to a possible con-
figuration x ∈ X d. Then, it is natural to define g such that it
respects the structure of G, in the sense that g(x,x′) = 0 if
x′ /∈ Nx ∪ {x}, where Nx := {x′ : (x,x′) ∈ E} is the set
of neighbors of x in G. If G is undirected, one would also
make g symmetric, in which case L ≡ L∗ is self-adjoint.

Revisiting the difference Stein operator in this light, notice
that ¬ defines a d-dimensional (undirected) lattice graph
G on X d, in which two vertices x and x′ are connected
if and only if x′ = ¬ix for some i ∈ {1, . . . , d}. In this
case, every vertex x has exactly d neighbors in G: Nx =
{¬1x, . . . ,¬dx}. We then set g(x,¬ix) = −ei for each i,
g(x,x) = e, and g(x,x′) = 0 for x′ 6∈ Nx ∪ {x}, where
ei ∈ Rd is the i-th standard basis vector, and e ∈ Rd is the
all-ones vector. This recovers the form of g in Eq. (9).

As another example, one could take g(x,x′) = −|Nx|−1

for x′ ∈ Nx and set g(x,x′) = I[x = x′] otherwise. Then,
Eq. (5) becomes Lf(x) = 1

|Nx|
∑

x′∈Nx
(f(x)− f(x′)) ,

which recovers the normalized Laplacian of G (see also
Amari, 2016). Thus, by specifying an arbitrary graph struc-
ture G onX d, one could also utilize its Laplacian L to define
a corresponding Stein operator T by applying Theorem 3.
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4. Kernelized Discrete Stein Discrepancy
We can now proceed similarly as in the continuous case
(Liu et al., 2016; Chwialkowski et al., 2016) to define the
discrete Stein discrepancy and its kernelized counterpart.
While all results in this section hold for the general Stein
operators discussed in Section 3.2, for clarity we state them
for the difference Stein operator described in Section 3.1.

Definition 4 (Discrete Stein discrepancy). Let X be a finite
set. For a family F of functions f : X d → Rd, define the
discrete Stein discrepancy between two positive pmfs p, q as

D(q ‖ p) := sup
f∈F

Ex∼q [tr (Apf(x))] ,

where Apf(x) = sp(x) f(x)T − ∆∗f(x) is the difference
Stein operator w.r.t. p. Taking F to be the unit ball in an
RKHS Hd of vector-valued functions f : X d → Rd, we
obtain the kernelized discrete Stein discrepancy (KDSD):

D(q ‖ p) = sup
f∈Hd, ‖f‖Hd≤1

Ex∼q [tr (Apf(x))] . (10)

Although Eq. (10) involves solving a variational problem,
the next two results show that the kernelized discrete Stein
discrepancy can actually be computed in closed-form. Due
to space constraints, we defer their proofs to the Appendix.

Theorem 6. The kernelized discrete Stein discrepancy as
defined in Eq. (10) admits an equivalent representation:

D(q ‖ p)2 = Ex,x′∼q
[
δp,q(x)Tk(x,x′) δp,q(x

′)
]
, (11)

where δp,q(x) := sp(x) − sq(x) is the score-difference
between p and q.

Theorem 7. Define the kernel function

κp(x,x
′) = sp(x)Tk(x,x′) sp(x

′)− sp(x)T∆∗x′k(x,x′)

−∆∗xk(x,x′)Tsp(x
′) + tr

(
∆∗x,x′k(x,x′)

)
, (12)

then
D(q ‖ p)2 = Ex,x′∼q [κp(x,x

′)] . (13)

The next result justifies D(q ‖ p) as a divergence measure.

Lemma 8. For a finite set X , let p and q be positive pmfs
on X d. LetH be an RKHS on X d with kernel k(·, ·), and let
D(q ‖ p) be defined as in Eq. (10). Assume that the Gram
matrix K = [k(x,x′)]x,x′∈Xd is strictly positive definite,
then D(q ‖ p) = 0 if and only if p = q.

Proof. By Theorem 6, we have

D(q ‖ p)2 = Ex,x′∼q
[
δp,q(x)Tk(x,x′) δp,q(x

′)
]

=
∑

x∈Xd

∑
x′∈Xd

q(x)δp,q(x)Tk(x,x′) δp,q(x
′)q(x′),

where δp,q(x) = sp(x) − sq(x) ∈ Rd. Denote the `-th
element of δp,q by δ`p,q , and write g` := [q(x)δ`p,q(x)]x∈Xd

for ` = 1, . . . , d. Then, D(q ‖ p)2 =
∑d
`=1 gT

` Kg`. Since
K is strictly positive-definite, D(q ‖ p)2 = 0 if and only if
g` = 0 for all `. Therefore, δp,q(x) = 0 for all x ∈ X d.
By Theorem 1, this holds if and only if p = q.

5. Goodness-of-Fit Testing via KDSD
Given a (possibly un-normalized) model distribution p and
i.i.d. samples {xi}ni=1 from an unknown data distribution
q on X d, we would like to measure the goodness-of-fit of
the model distribution p to the observed data {xi}ni=1. To
this end, we perform the hypothesis test H0 : p = q vs.
H1 : p 6= q using the kernelized discrete Stein discrepancy
(KDSD) measure. Denote S(q ‖ p) := D(q ‖ p)2; we can
estimate S(q ‖ p) via a U -statistic (Hoeffding, 1948) which
provides a minimum-variance unbiased estimator:

Ŝ(q ‖ p) =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

κp(xi,xj) . (14)

As in the continuous case (Liu et al., 2016), the U -statistic
Ŝ(q ‖ p) is asymptotically Normal under the alternative hy-
pothesis H1 : p 6= q,

√
n (Ŝ(q ‖ p)−S(q ‖ p)) D→ N (0, σ2),

where σ2 = Varx∼q(Ex′∼q [κp(x,x
′)]) > 0, but becomes

degenerate (σ2 = 0) under the null hypothesis H0 : p = q
(see Theorem 11 in the Appendix for a precise statement).

Since the asymptotic distribution of Ŝ(q ‖ p) under the null
hypothesis cannot be easily calculated, we follow Liu et al.
(2016) and adopt the bootstrap method for degenerate U -
statistics (Arcones & Gine, 1992; Huskova & Janssen, 1993)
to draw samples from the null distribution of the test statistic.
Specifically, to obtain a bootstrap sample, we draw random
multinomial weights w1, . . . , wn ∼ Mult(n; 1/n, . . . , 1/n),
set w̃i = (wi − 1)/n, and compute

Ŝ∗(q ‖ p) =

n∑
i=1

n∑
j 6=i

w̃iw̃jκp(xi,xj). (15)

Upon repeating this procedure m times, we calculate the
critical value of the test by taking the (1− α)-th quantile of
the bootstrapped statistics {Ŝ∗b}mb=1.

The overall goodness-of-fit testing procedure is summarized
in Algorithm 1. Computing the test statistic in Eq. (14) takes
O(n2) time, where n is the number of observations, and the
bootstrapping procedure takes O(mn2) time, where m is
the number of bootstrap samples used.

Kernel choice. A practical question that arises when per-
forming the KDSD test is the choice of the kernel function
k(·, ·) on X d. For continuous spaces, the RBF kernel might
be a natural choice; Gorham & Mackey (2017) also pro-
vide further recommendations. For discrete spaces, a naive
choice is the δ-kernel, k(x,x′) = I{x = x′}, which suffers
from the curse of dimensionality. A more sensible choice is
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Algorithm 1 Goodness-of-fit testing via KDSD

1: Input: Difference score function sp of p, data samples
{xi}ni=1 ∼ q, kernel function k(·, ·), bootstrap sample
size m, significance level α.

2: Objective: Test H0 : p = q vs. H1 : p 6= q.
3: Compute test statistic Ŝ(q ‖ p) via Eq. (14).
4: for b = 1, . . . ,m do
5: Compute bootstrap test statistic Ŝ∗b via Eq. (15).
6: end for
7: Compute critical value γ1−α by taking the (1− α)-th

quantile of the bootstrap test statistics {Ŝ
∗
b}mb=1.

8: Output: Reject H0 if test statistic Ŝ(q ‖ p) > γ1−α,
otherwise do not reject H0.

the exponentiated Hamming kernel:

k(x,x′) = exp{−H(x,x′)}, (16)

where H(x,x′) := 1
d

∑d
i=1 I{xi 6= x′i} is the normalized

Hamming distance. Lemma 12 in the Appendix shows that
Eq. (16) defines a positive definite kernel.

When the inputs x and x′ encode additional structure about
X d, the Hamming distance may no longer be appropriate.
For instance, when x ∈ {0, 1}(

d
2) represents the (flattened)

adjacency matrix of an undirected and unweighted graph on
d vertices, two graphs x and x′ may be isomorphic yet have
non-zero Hamming distance. In this case, we can resort to
the literature on graph kernels (Vishwanathan et al., 2010).
Section 7 gives an example of using the Weisfeiler-Lehman
graph kernel of Shervashidze et al. (2011) to test whether a
set of graphs {xi}ni=1 comes from a specific distribution.

6. Related Work and Discussion
Stein’s method. In probability theory, Stein’s method has
become an important tool for deriving approximations to
probability distributions and characterizing convergence
rates (see e.g., Barbour & Chen (2014) for an overview).
Related to our characterization via adjoint operators, Ley
et al. (2017) also proposed the notion of a canonical Stein
operator. Recently, Bresler & Nagaraj (2017); Reinert &
Ross (2017) applied Stein’s method to bound the distance
between two stationary distributions of irreducible Markov
chains in terms of their Glauber dynamics. Notably, they
also make use of a difference operator for the binary case,
and it is interesting to investigate whether their analysis
techniques could be adopted for goodness-of-fit testing.

Goodness-of-fit tests. Closely related to our work is the
kernelized Stein discrepancy test proposed independently
by Chwialkowski et al. (2016); Liu et al. (2016) for smooth
densities on continuous spaces. Our work further identifies
and characterizes Stein operators for discrete domains, uni-
fying them via Theorem 3 under a general framework for

constructing Stein operators from adjoint operators. Under
this framework, any Stein operator can be directly used to
establish a KDSD test (under completeness conditions).

In addition to kernel-based tests, other forms of goodness-of-
fit tests have also been examined for discrete distributions.
Some recent examples include Valiant & Valiant (2016);
Martı́n del Campo et al. (2017); Daskalakis et al. (2018).
However, these tests are often model-specific, and typically
assume that the normalization constant is easy to evaluate.
In contrast, the KDSD test we propose is fully nonparamet-
ric, and applies to any un-normalized statistical model.

Score-matching methods. Proposed by Hyvärinen (2005),
score-matching methods make use of score functions to per-
form parameter estimation in un-normalized models. Sup-
pose we observe data {x}ni=1 from some unknown density
q(x) which we would like to approximate using a parame-
terized model density p(x;θ). To estimate the parameters θ,
score-matching methods minimize the Fisher divergence:

J(θ) =

∫
ξ∈Rd

q(ξ) ‖∇ξ log p(ξ;θ)−∇ξ log q(ξ)‖22 dξ.

Similar to the continuous KSD (Liu et al., 2016), if we
set k(x,x′) = I{x = x′}/

√
q(x) q(x′) and apply Theo-

rem 6, the KDSD statistic can be written as D(q ‖ p)2 =
Ex∼q

[
‖sp(x)− sq(x)‖22

]
, which takes the same form as

J(θ) with the continuous score function ∇ log p(x) re-
placed by the difference score function sp(x).

Extensions of score-matching to discrete data have also
been considered in Hyvärinen (2007); Lyu (2009); Amari
(2016), and our work draws insights from these in the design
of score functions for Stein operators. In particular, Lyu
(2009) examined the connections between adjoint operators
and Fisher divergence, and Amari (2016) discussed score
functions for data from a graphical model. However, the
connections to Stein operators and kernel-based hypothesis
testing have not appeared in the score-matching literature.

Two-sample tests. Complementing goodness-of-fit tests
(or one-sample tests) are two-sample tests, where we test
if two collections of samples come from the same distri-
bution. A well-known kernel two-sample test statistic is
the maximum mean discrepancy (MMD) of Gretton et al.
(2012). Given i.i.d. samples {xi}ni=1 ∼ p and {yj}n

′

j=1 ∼ q,
one could compute a U -statistic estimate of MMD(p, q) in
O(nn′) time. The critical value of the test is calculated by
bootstrapping on the aggregated data.

Two-sample tests can also be used as goodness-of-fit tests by
comparing observed data with samples from the null model.
For distributions with intractable normalization constants,
obtaining exact samples from p could become very difficult
or expensive. Further, approximate samples may introduce
bias and/or correlation among the samples, violating the test
assumptions, and leading to unpredictable test errors.
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7. Applications
We apply the proposed KDSD goodness-of-fit test to three
statistical models involving discrete distributions. We de-
scribe the models and derive their difference score functions
in Section 7.1, and present experiments in Section 7.2.

7.1. Statistical Models

Ising model. The Ising model (Ising, 1924) is a canonical
example of a Markov random field (MRF). Consider an
(undirected) graph G = (V,E), where each vertex i ∈ V is
associated with a binary spin. The collection of spins form
a random vector x = (x1, x2, . . . , xd), whose components
xi and xj (i 6= j) interact directly only if (i, j) ∈ E. The
pmf is pΘ(x) = 1

Z(Θ) exp{
∑

(i,j)∈E θijxixj}, where θij
are the edge potentials and Z(Θ) is the partition function
which is prohibitive to compute when d is high. Recognizing
the pmf as an exponential family distribution, we can apply
Eq. (2) to obtain the difference score function: (sp(x))i =
1 − exp{−2xi

∑
j∈Ni

θijxj}, where Ni := {j : (i, j) ∈
E} denotes the set of vertices adjacent to node i in graph G.

Bernoulli restricted Boltzmann machine (RBM). The
RBM (Hinton, 2002) is an undirected graphical model
consisting of a bipartite graph between visible units v
and hidden units h. In a Bernoulli RBM, both v and
h are Bernoulli-distributed; X = {0, 1}. The joint pmf
of an RBM with M visible units and K hidden units is
given by p(h,v|θ) = 1

Z(θ) exp{−E(v,h;θ)}, with en-
ergy function E(v,h;θ) = −(vTWh + vTb + hTc),
where W ∈ RM×K are the weights, b ∈ RM and
c ∈ RK are the bias terms, θ := (W,b, c), and Z(θ) =∑

v

∑
h exp{−E(v,h;θ)} is the partition function.

Marginalizing out the hidden variables h, the pmf of v is
given by p(v|θ) = 1

Z′(θ) exp{−F (v;θ)}, with free energy

F (v;θ) = −vTb −
∑K
k=1 log(1 + exp{vTW∗k + ck}).

Here, W∗k denotes the k-th column of W, and Z ′(θ) =∑
v exp{−F (v;θ)} is another normalization constant.

Thus, we can write down the (difference) score function
as (sp(v;θ))i = 1 − eṽibi

∏K
k=1

1+exp{vTW∗k+ṽiwik+ck}
1+exp{vTW∗k+ck} ,

where ṽi = ¬vi − vi. Note that sp(v;θ) is again free of
normalization constants and can be easily evaluated.

Exponential random graph model (ERGM). The ERGM
is a well-studied statistical model for network data (Holland
& Leinhardt, 1981). In a typical ERGM, the probability of
observing an adjacency matrix y ∈ {0, 1}n×n is p(y) =

1
Z(θ,τ) exp

{∑n−1
k=1 θkSk(y)+τT (y)

}
. Here, Sk(·) counts

the number of edges (k = 1) or k-stars (k ≥ 2), T (·) counts
triangles, and Z(θ, τ) is the normalization constant.

We consider an ERGM distribution of undirected graphs
y with three sufficient statistics: S1(y), the number of

edges (1-stars); S2(y), the number of wedges (2-stars);
and T (y), the number of triangles.2 The parameters for
these sufficient statistics are θ1, θ2, and τ , respectively.
The score function can be written as (sp(y))ij = 1 −
exp{θ1δ1(y) + θ2δ2(y) + τδ3(y)}, with the change statis-
tics given by δ1(y) := [S1(¬ijy) − S1(y)] = (−1)yij ,
δ2(y) := [S2(¬ijy) − S2(y)] = (−1)yij (|N \ji | + |N

\i
j |),

and δ3(y) := [T (¬ijy)−T (y)] = (−1)yij |Ni∩Nj |, where
Ni denotes the neighbor-set of node i, andN \ji := Ni\{j}.

7.2. Experiments

We apply the kernelized discrete Stein discrepancy (KDSD)
test to the statistical models described in Sections 7.1. In
the absence of established baselines, we compare with a
two-sample test based on the maximum mean discrepancy
(MMD) (see Section 6). For both KDSD and MMD, we
utilize the exponentiated Hamming kernel (Eq. (16)) for the
Ising model and RBM, and the Weisfeiler-Lehman graph
kernel (Shervashidze et al., 2011) for the ERGM.

Setup. Denote the null model distribution by p and the
alternative distribution by q. For each distribution, we draw
exact i.i.d. samples by running n independent Markov chains
with different random initializations, each for 105 iterations,
and collecting only the last sample of each chain. For KDSD,
we draw n samples from q; for MMD, we draw n samples
from q and another n samples from p. Under this setup,
both KDSD and MMD takes time O(mn2), where m is the
number of bootstrap samples used to determine the critical
threshold. We set m = 5000 for both methods throughout.

For each model, we choose a “perturbation parameter” and
fix its value for the null distribution p, while drawing data
samples under various values of the perturbation parameter.
We also vary the sample size n to examine the performance
of the test as n increases. For each value of the perturbation
parameter and each sample size n, we conduct 500 inde-
pendent trials. In each trial, we first randomly flip a fair
coin to decide whether to set the alternative distribution q
to be the same as p or with a different value of the pertur-
bation parameter. (In the former case, the null hypothesis
H0 : p = q should not be rejected, and in the latter case it
should be.) Then, we draw n independent samples from q
(for KDSD) or both p and q (for MMD) and perform the hy-
pothesis test H0 : p = q vs. H1 : p 6= q under significance
level α = 0.05. We evaluate the performance of the KDSD
and MMD tests in terms of their false-positive rate (FPR;
Type-I error) and false-negative rate (FNR; Type-II error),
and report the results across 500 independent trials.

Ising model. We consider a periodic 10-by-10 lattice, with
d = 100 random variables. We focus on the ferromagnetic

2 Notice that the sufficient statistics are not independent: e.g.,
S2(y) > T (y) since every triangle contains three 2-stars.
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(b) Ising model (T0 = 20)
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Figure 1. Top row: KDSD and MMD testing error rate vs. perturbation parameter (the vertical dotted lines indicate the value of the
perturbation parameter under H0). Bottom row: KDSD and MMD testing error rate vs. sample size.

setting and set θij = 1/T , where T is the temperature of
the system. For T0 ∈ {5, 20} and various values of T ′, we
test the hypotheses H0 : T = T0 vs. H1 : T 6= T0 using
data samples drawn from the model under T = T ′. To draw
samples from the Ising model, we apply the Metropolis
algorithm: in each iteration, we propose to flip the spin of a
randomly chosen variable xi, and adopt this proposal with
probability min(1, exp{−2xi

∑
j∈Ni

θijxj}).

Bernoulli RBM. We use M = 50 visible units and K = 25
hidden units. We draw the entries of the weight matrix
W i.i.d. from a Normal distribution with mean zero and
standard deviation 1/M, and the entries of the bias terms b
and c i.i.d. from the standard Normal distribution. We cor-
rupt the weights in W by adding i.i.d. Gaussian noise with
mean zero and standard deviation σ, and test the hypotheses
H0 : σ = 0 (no-corruption) vs. H1 : σ 6= 0 using data sam-
ples drawn under σ = σ′ for various values of σ′. To draw
samples from the RBM, we perform block Gibbs sampling
by exploiting the bipartite structure of the graphical model.

ERGM. We consider an ERGM distribution for undirected
graphs on 20 nodes, with the dimension of each sample
d =

(
20
2

)
= 190. We fix θ1 = −2 and τ = 0.01, For various

values of the 2-star parameter θ′2, we test the hypotheses
H0 : θ2 = 0 vs. H1 : θ2 6= 0 using data samples drawn
under θ2 = θ′2. To draw MCMC samples from the ERGM,
we utilize the ergm R package (Handcock et al., 2017).

Results. In Figure 1, the top row plots the testing error rate
vs. different values of the perturbation parameter in H1, for
a fixed H0 and sample size; while the bottom row plots the
error rate vs. sample size n for a fixed pair of H0 and H1.
We observe that both KDSD and MMD maintain a false-

positive rate (Type-I error) around or below the significance
level α = 0.05. In addition, KDSD consistently achieves
lower false-negative rate (Type-II error) than MMD in most
cases, indicating that KDSD, by utilizing the score function
information of p, leads to a more powerful test.

It is interesting to note that in the ERGM example, MMD
exhibits higher power than KDSD when the data samples
were drawn from an ERGM distribution with θ′2 ∈ (0, 0.05)
(roughly). We hypothesize that this may correspond to a
regime in which a small change in θ2 causes a subtle change
in the global graph structure that can be more easily detected
by MMD, while the difference Stein operator of Section 3.1
may be more adapt in detecting local differences. Thus,
the performance of the KDSD test could be improved by
constructing Stein operators (using the characterization of
Section 3.2) that exploit higher-order structure in the graph
samples, and we plan to investigate this in future work.

8. Conclusion
We have introduced a kernelized Stein discrepancy measure
for discrete probability distributions, which enabled us to
establish a nonparametric goodness-of-fit test for discrete
distributions with intractable normalization constants. Fur-
thermore, we have proposed a general characterization of
Stein operators that encompasses both discrete and contin-
uous distributions, providing a recipe for constructing new
Stein operators. We have applied the proposed goodness-of-
fit test to three statistical models involving discrete distribu-
tions, and shown that it typically outperforms a two-sample
test based on the maximum mean discrepancy.
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Appendix to
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Proof of Theorem 1. Clearly, p = q implies that sp(x) = sq(x) for all x ∈ X d. It remains to be shown that the converse is
true. By Eq. (1), sp(x) = sq(x) for all x ∈ X d implies that p(¬ix)/p(x) = q(¬ix)/q(x) for all x ∈ X d and all i = 1, . . . , d. We
show that the latter implies that all the singleton conditional distributions of p and q must match, i.e., p(xi|x−i) = q(xi|x−i)
for all xi ∈ X and for all i = 1, . . . , d, where x−i := (x1, . . . , xi−1, xi+1, . . . , xd).

Specifically, using the fact that ¬ is a cyclic permutation on X , we can write

1

p(xi|x−i)
=

∑
ξi∈X p(x1, . . . , xi−1, ξi, xi+1, . . . , xd)

p(x1, . . . , xi−1, xi, xi+1, . . . , xd)
=
∑
ξi∈X

p(x1, . . . , xi−1, ξi, xi+1, . . . , xd)

p(x1, . . . , xi−1, xi, xi+1, . . . , xd)

=

|X |∑
`=1

p(x1, . . . , xi−1,¬
(`)xi, xi+1, . . . , xd)

p(x1, . . . , xi−1, xi, xi+1, . . . , xd)

=

|X |∑
`=1

p(¬
(`)
i x)

p(x)
=

|X |∑
`=1

`−1∏
j=0

p(¬
(j+1)
i x)

p(¬
(j)
i x)

=

|X |∑
`=1

`−1∏
j=0

p(¬iyij)

p(yij)
, (17)

where we adopted the convention that ¬(0)x = x and written yij := ¬
(j)
i x in the last term. By Eq. (1), all the terms on the

right-hand-side of Eq. (17) will be determined by the score function sp(x), and thus sp(x) = sq(x) for all x ∈ X d implies
that all the singleton conditional distributions must match: p(xi|x−i) = q(xi|x−i), ∀x ∈ X d. By Brook’s lemma (Brook,
1964; see Lemma 9 for a self-contained proof), the joint probability distribution is fully specified by the collection of
singleton conditional distributions, and thus we must have p(x) = q(x) for all x ∈ X d.

Lemma 9 (Brook, 1964). Assume that p(x) > 0 for all x ∈ X d. The joint distribution p(x) is completely determined by
the collection of singleton conditional distributions p(xi|x−i), where x−i := (x1, . . . , xi−1, xi+1, . . . , xd), i = 1, . . . , d.

Proof. Let p(x1, . . . , xd) and p(y1, . . . , yd) denote the joint densities (pmfs or pdfs) for (x1, . . . , xd) and (y1, . . . , yd),
respectively. We can write

p(x1, x2, . . . , xd)

p(y1, y2, . . . , yd)
=
p(x1, x2, . . . , xd)

p(y1, x2, . . . , xd)
· p(y1, x2, . . . , xd)

p(y1, y2, . . . , xd)
· · · p(y1, y2, . . . , yd−1, xd)

p(y1, y2, . . . , yd−1, yd)

=
p(x1|x2, . . . , xd)

p(y1|x2, . . . , xd)
· p(x2|y1, x3, . . . , xd)

p(y2|y1, x3, . . . , xd)
· · · p(xd|y1, . . . , yd−1)

p(yd|y1, . . . , yd−1)
.

Thus, the collection of all singleton conditional distributions completely determine the ratios of joint probability densities,
which in turn completely determine the joint densities themselves, since they have to sum to one.

The following result provides more convenient expressions for evaluating Ex∼p [Apf(x)] and Ex∼p [tr (Apf(x))].

Lemma 10 (See also Ley & Swan (2013)). For positive pmfs p, q and any function f : X d → Rd, we have

Ex∼q [Apf(x)] = Ex∼q
[
(sp(x)− sq(x)) f(x)T

]
,

Ex∼q [tr (Apf(x))] = Ex∼q
[
(sp(x)− sq(x))Tf(x)

]
.

Proof. Theorem 2 states that Ex∼q [Aqf(x)] = 0. Thus, writing Ex∼q [Apf(x)] = Ex∼q [Apf(x)−Aqf(x)] =
Ex∼q[(sp(x)− sq(x)) f(x)T] and taking the trace on both sides completes the proof.



Goodness-of-Fit Testing for Discrete Distributions via Stein Discrepancy

Proof of Theorem 3 (Continued). Necessity: Assume that a linear operator T satisfies Eq. (7); we show that it can be
written in the form of Eq. (8) for some linear operators L and L∗ of the forms (5) and (6). Recall that for a finite set X , any
function f : X d → R can be represented by a vector f ∈ R|X |d , and any linear operator T on the set of functions f can be
represented via a matrix T ∈ R|X |d×|X|d under the standard basis of R|X |d . Under these notations, T f can be represented
by Tf , and Eq. (7) can be rewritten in matrix form as

Ex∼p [Tpf(x)] =
∑

x∈Xd

p(x)Tpf(x) = pT(Tpf) = 0 ,

which holds for any function f (i.e., for any vector f ) if and only if pTTp = 0. We can always find a diagonal matrix D
and a matrix L such that Tp = D− L. Observe that pTTp = 0, i.e., pTD = pTL if and only if dii = pTL∗i/pi for all i,
where dii is the i-th diagonal element of D and L∗i is the i-th column of L. Thus, Eq. (7) holds if and only if

Tp = diag {p}−1
diag

{
LTp

}
− L

for some matrix L, where diag {p} denotes the diagonal matrix whose i-th diagonal entry equals pi. Rewriting, we have

diag {p}Tp = diag
{
LTp

}
− diag {p}L .

Right-multiplying both sides by an arbitrary vector f ∈ R|X |d , we obtain

p� (Tpf) = (LTp)� f − p� (LTf) , (18)

where � denotes the Hadamard product. Let L and L∗ be the linear operators with matrices LT and L under the standard
basis, Eq. (18) can be re-written as

p(x)Tpf(x) = Lp(x)f(x)− p(x)L∗f(x)

for all x ∈ X d. Finally, dividing by p(x) on both sides yields Eq. (8).

Proof of Theorem 6. Observe that

Ex∼q [tr (Apf(x))] =

d∑
`=1

Ex∼q
[
s`p(x) f`(x)−∆∗x`

f`(x)
]

=

d∑
`=1

Ex∼q
[
s`p(x) 〈f`, k(·,x)〉H −

〈
f`,∆

∗
x`
k(·,x)

〉
H

]
=

d∑
`=1

〈
f`,Ex∼q

[
s`p(x) k(·,x)−∆∗x`

k(·,x)
]〉
H ,

where we used the reproducing property 〈f`, k(·,x)〉H = f`(x) and the fact that

∆∗xj
fi(x) = fi(x)− fi(⨼jx) = 〈fi, k(·,x)〉 − 〈fi, k(·,⨼jx)〉 = 〈fi, k(·,x)− k(·,⨼jx)〉 =

〈
fj ,∆

∗
xj
k(·,x)

〉
.

Denoting β(·) := Ex∼q [sp(x)k(·,x)−∆∗k(·,x)] ∈ Hm, we have

Ex∼q [tr (Apf(x))] =

d∑
`=1

〈f`, β`〉H = 〈f ,β〉Hm .

Thus, we can rewrite the kernelized discrete Stein discrepancy as

D(q ‖ p) = sup
f∈Hm, ‖f‖Hm≤1

〈f ,β〉Hm ,

which immediately implies that D(q ‖ p) = ‖β‖Hm since the supremum will be attained by f = β/‖β‖Hm .
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By Lemma 10, we have

β(·) = Ex∼q [sp(x)k(·,x)−∆∗k(·,x)] = Ex∼q [(sp(x)− sq(x))k(·,x)] .

Writing δp,q(x) := sp(x)− sq(x), we have

D(q ‖ p)2 = ‖β‖2Hm =

d∑
`=1

〈β`, β`〉H =

d∑
`=1

〈
Ex∼q

[
δ`p,q(x) k(·,x)

]
,Ex′∼q

[
δ`p,q(x

′) k(·,x′)
]〉
H

=

d∑
`=1

Ex,x′∼q
[
δ`p,q(x) 〈k(·,x), k(·,x′)〉H δ

`
p,q(x

′)
]

= Ex,x′∼q
[
δp,q(x)T 〈k(·,x), k(·,x′)〉H δp,q(x

′)
]

= Ex,x′∼q
[
δp,q(x)Tk(x,x′) δp,q(x

′)
]
,

where we used the reproducing property, k(x,x′) = 〈k(·,x), k(·,x′)〉H. This concludes the proof.

Proof of Theorem 7. Expanding the expression for δp,q(x) and applying Lemma 10 twice, we obtain

D(q ‖ p)2 = Ex,x′∼q
[
δp,q(x)Tk(x,x′)δp,q(x

′)
]

= Ex∼q
[
δp,q(x)TEx′∼q [k(x,x′)δp,q(x

′)]
]

= Ex∼q
[
δp,q(x)TEx′∼q [k(x,x′)sp(x

′)−∆∗x′k(x,x′)]
]

= Ex,x′∼q
[
sp(x)Tk(x,x′) sp(x

′)− sp(x)T∆∗x′k(x,x′)−∆∗xk(x,x′)Tsp(x
′) + tr

(
∆∗x,x′k(x,x′)

)]
= Ex,x′∼q [κp(x,x

′)] ,

which completes the proof.

Theorem 11 (Adapted from Liu et al., 2016). Let k(x, x′) be a strictly positive definite kernel on X d, and assume that
Ex,x′∼q

[
κp(x,x

′)2
]
<∞. We have the following two cases:

(i) If q 6= p, then Ŝ(q ‖ p) is asymptotically Normal:
√
n
(
Ŝ(q ‖ p)− S(q ‖ p)

)
D→ N (0, σ2),

where σ2 = Varx∼q(Ex′∼q [κp(x,x
′)]) > 0.

(ii) If q = p, then σ2 = 0, and the U -statistic is degenerate:

n Ŝ(q ‖ p) D→
∑
j

cj(Z
2
j − 1),

where {Zj}
iid∼ N (0, 1) and {cj} are the eigenvalues of the kernel κp(·, ·) under q.

Lemma 12. The exponentiated Hamming kernel

k(x,x′) = exp{−H(x,x′)},

where H(x,x′) := 1
d

∑d
i=1 I{xi 6= x′i} is the normalized Hamming distance, is positive definite.

Proof. Without loss of generality, assume that X = {0, 1} is a binary set; the general case can be easily accommodated by
modifying the feature map to be described next. Define the feature map φ : X d → X 2d, x 7→ x̃, where x̃2i−1 = I{xi = 0}
and x̃2i = I{xi = 1} for i = 1, . . . , d. Then, the normalized Hamming distance can be expressed as

H(x,x′) = 1− 1

d

d∑
i=1

I{xi = x′i} = 1− 1

2d

2d∑
j=1

x̃j x̃
′
j = 1− 1

2d
x̃Tx̃′ = 1− 1

2d
φ(x)Tφ(x′).

Thus, 1−H(x,x′) is a positive definite kernel. By Taylor expansion, exp{1−H(x,x′)} (and hence exp{−H(x,x′)})
also constitutes a positive definite kernel on X d.


