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Abstract

Research in social network analysis and statistical relational
learning has produced a number of methods for learning rela-
tional models from large-scale network data. Unfortunately,
these methods have been developed under the unrealistic as-
sumption of full data access. In practice, however, the data
are often collected by crawling the network, due to propri-
etary access, limited resources, and privacy concerns. While
prior studies have examined the impact of network crawling
on the structural characteristics of the resulting samples, this
work presents the first empirical study designed to assess the
impact of widely used network crawlers on the estimation of
peer effects. Our experiments demonstrate that the estimates
obtained from network samples collected by existing crawlers
can be quite inaccurate, unless a significant portion of the net-
work is crawled. Meanwhile, motivated by recent advances in
partial network crawling, we develop crawl-aware relational
methods that provide accurate estimates of peer effects with
statistical guarantees from partial crawls.

Introduction

The recent explosion of large-scale network datasets has fu-
eled a great deal of interest in learning relational models to
identify peer effects. For example, political views are often
correlated among friends in social networks. While much
work has been done in the relational learning community
to develop models and algorithms for estimation and infer-
ence in networks, a primary assumption underlying these
works is that a full network is available for learning. How-
ever, the network datasets used to study peer effects are typ-
ically samples of a larger network. In particular, it is often
the case that researchers do not have random access to the
full network structure and that sampling is only possible via
repeated crawling from a node to one of its neighbors.

In this work, we provide, to the best of our knowledge, the
first empirical study to assess the accuracy and reliability of
peer effect estimates from crawled network data, comparing
five different sampling methods across five network datasets.
We learn relational models from the crawled samples and as-
sess the quality of their parameter estimates, model predic-
tions, and confidence intervals for the estimated parameters.
We show that data collected by existing network crawlers,
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when used for estimation in relational methods, often pro-
duce inaccurate estimates of peer effects unless a large por-
tion of the network is crawled. Most importantly, we find
that two researchers, using different partial crawls, could
reach widely divergent estimates, which affects the trust-
worthiness and reproducibility of the results. For instance,
in a large social network dataset, we show that most meth-
ods would incorrectly assess the correlation between a user’s
age and their friend’s zodiac sign (cf. Figure 2a).

Meanwhile, we also demonstrate that accurate estima-
tion of peer effects is possible through the design of crawl-
aware relational methods. Recently, Avrachenkov, Ribeiro,
and Sreedharan (2016) proposed a general crawling method
that yield estimates with statistical guarantees of edge-based
functions in graphs. Based on their sampling method, we
derive an improved crawl-aware parameter estimation algo-
rithm, and provide a nonparametric approach to computing
confidence intervals for the estimated peer effects.

Summary of Contributions

• We conduct a set of experiments to investigate the impact
of network sampling on the estimation of relational learn-
ing models under an access-restricted scenario.

• We show that estimates based on popular network crawl-
ing methods are often inaccurate and may lead to incorrect
conclusions regarding peer effects.

• We introduce crawl-aware relational methods that can ac-
curately estimate network-wide peer effects and construct
well-calibrated confidence intervals from crawling only a
small portion of a large attributed social network.

Problem Definition

The goal of this work is to study the effects of sampling on
the estimation of relational models in large social networks
under an access-restricted scenario. More specifically, we
are interested in accurately estimating model parameters in
order to effectively assess peer effects—i.e., the importance
of relational features involving the neighbors of a node.1

We assume that random access to the full network struc-
ture is not available, and that the network can only be ac-
cessed via crawling. Specifically, we assume (i) the avail-

1In this work, the peer effects are represented by the parameters
in a relational model, and we shall use the terms interchangeably.
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ability of a seed node in the network, (ii) the ability to query
for the attributes of a sampled node, and (iii) the ability to
transition to neighbors of a sampled node.

Given such an access pattern, and assuming that the full
network cannot be crawled, the task is to accurately esti-
mate peer effects by learning a relational model over the
sampled network. If we refer to the estimates that a learn-
ing algorithm would obtain from the full network as global
estimates and those from the sampled network as sample es-
timates, then the ideal method should produce (i) unbiased
sample estimates (w.r.t. the global estimates), and (ii) accu-
rate assessments of the uncertainty associated with the sam-
ple estimates (e.g., confidence intervals).

Background and Related Work

Denote a graph by G = (V,E), where V is the set of vertices
and E ⊆ V ×V is the set of edges. For a node v ∈ V , denote
its neighbors by Nv = {u ∈ V : (u, v) ∈ E} and its degree
by dv = |Nv |. Finally, let 1{·} denote the indicator function.

Network Sampling Algorithms We note that under a
crawl-based scenario, any technique involving random
node/edge selection will be infeasible.

Snowball sampling (BFS) traverses the network via a
breadth-first search. Forest fire (FF) (Leskovec and Falout-
sos 2006) samples (“burns”) a random fraction of a node’s
neighbors, and repeats this process recursively for each
“burned” neighbor. Random walk sampling (RW) performs
a random walk on the network by transitioning from the
current node to a randomly selected neighbor at every step.
Metropolis-Hastings random walk (MH) (Gjoka et al. 2010)
sets the transition probability from node u to v as PMH

u,v =

min(1/du, 1/dv) if v ∈ Nu and 1−∑w �=u PMH
u,w if v = u, which

yields a uniform stationary distribution over nodes.
Random walk tour sampling (TS) (Avrachenkov, Ribeiro,

and Sreedharan 2016) is a recently proposed method that
exploits the regenerative properties of random walks. Given
an initial seed node, the algorithm first performs a short
random walk to collect a set of seed nodes S ⊆ V , and
then proceeds to sample a sequence of random walk tours.
Specifically, the k-th random walk tour starts from a sampled
node v

(k)
1 ∈ S and transitions through a sequence of nodes

v
(k)
2 , · · · , v(k)ξk−1 ∈ V \S until it returns to a node v

(k)
ξk

∈ S.
The algorithm repeats this process to sample m such tours,
denoted Dm(S) = {(v(k)1 , . . . , v

(k)
ξk

)}mk=1. Since the successive
returns to a seed node in S act as renewal epochs, the re-
newal reward theorem (Brémaud 1999) guarantees that sam-
ple statistics computed from each tour will be independent.

Relational Learning Models We utilize statistical rela-
tional learning models to estimate peer effects in networks.

Relational Bayes classifier (RBC) (Neville, Jensen, and
Gallagher 2003; Macskassy and Provost 2007) is a widely
used and interpretable relational model. The RBC is similar
to the conventional naive Bayes classifier except that the tar-
get class of a node is conditioned on the attributes and class
label of its neighbors. The posterior probability of a node
v ∈ V with attributes xv ∈ R

k taking on label yv is given by

Pr(yv|xv,Nv) ∝ Pr(yv)
k∏

i=1

Pr(xv,i|yv)
∏

u∈Nv

k+1∏

j=1

Pr(φu,j |yv) , (1)

where φu � (yu,xu) ∈ R
k+1 contains both the class label

and attribute values of node u. Parameters in the RBC model
include the prior probability Pr(yv) of node v having label
yv , conditional probabilities Pr(xv,i|yv) of node v having at-
tribute value xv,i given label yv , and conditional probabili-
ties Pr(φu,j |yv) that a neighboring node u has attribute/label
φu,j given that node v has label yv . The conditional proba-
bilities correspond to the peer effects we are interested in.

Comparison of Network Sampling Methods While prior
studies have examined the impact of crawling on network
analysis, our work differs from theirs in significant ways.

Leskovec and Faloutsos (2006) studied the impact of net-
work sampling methods on the structural characteristics of
the resulting sample, but they did not consider the impact of
sampling on the estimation of relational models in attributed
networks. On the other hand, Ahmed, Neville, and Kompella
(2012) studied the impact of network sampling on the per-
formance of the weighted-vote relational neighbor (wvRN)
classifier of Macskassy and Provost (2007). However, the
wvRN does not contain any parameters—it simply predicts
a node’s label via a majority vote among its neighbors—and
is therefore incapable of estimating peer effects.

Proposed Methodology

Given an unobserved network G = (V,E), the tasks are (i) to
estimate the parameters θ in a relational model by crawling
the network G from an initial set of seed nodes S ⊆ V , and
(ii) to assess the uncertainty associated with the estimates ̂θ.
Thus, the full procedure for estimating peer effects from a
large social network should consist of three phases:
Crawling Crawl the network using a sampling method.
Estimation Estimate peer effects from the crawled network.
Calibration Compute confidence intervals for the estimates.
For the crawling phase, we shall employ the random walk
tour sampling algorithm. Next, we discuss the details of our
proposed estimation and calibration methodology.

Relational Model Estimation In general, we do not have
any guarantees on the quality of peer effects estimated from
a crawled network. However, if the sample were collected
using the tour sampling algorithm, then we propose applying
Theorem 1 to accurately estimate the parameters in an RBC.

Theorem 1 Given the sampled tours {(v(k)1 , . . . , v
(k)
ξk

)}mk=1,
the following estimates for the prior, joint, and conditional
probabilities in Eq. (1) are asymptotically unbiased:

P̂r(c) ∝ dS
m

m∑
k=1

ξk−1∑
t=2

1

dvt
1{y

v
(k)
t

= c}+
∑
v∈S

1{yv = c} (2)

P̂r(a, b) ∝ dS
m

m∑
k=1

ξk−1∑
t=3

1{y
v
(k)
t−1

= a} · 1{y
v
(k)
t

= b}

+
∑

(u,v)∈E
u∈S or v∈S

1{yu = a} · 1{yv = b} (3)
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P̂r(a|b) = P̂r(a, b)
/ ∑

c

P̂r(c, b) , (4)

where dS = |((S×V )∩E)\(S×S)| denotes the total number
of outgoing edges from the seed nodes S, and a, b, c take on
arbitrary class values.

Proof The proof of asymptotic unbiasedness follows from
an application of the renewal reward theorem (Brémaud
1999). The details are omitted due to space constraints.

Calibration of Estimated Parameters To construct well-
calibrated confidence intervals for the estimated parameters,
we propose to utilize bootstrap resampling (Efron 1979). In
fact, this step can be performed as sampling progresses—
by monitoring the confidence intervals, the practitioner can
determine adaptively if more samples need to be collected.

For tours sampling, since the estimates computed from
each tour are independent, and by Theorem 1 they are also
unbiased, we can perform bootstrapping by treating the tours
individually, sample with replacement, compute an estimate
over the bootstrap sample, and repeat this process. We can
then compute empirical confidence intervals over the boot-
strap estimates. The theory of the bootstrap guarantees that
the obtained confidence intervals will be well-calibrated.
Among all the crawling methods under examination, tours
sampling is the only approach capable of producing well-
calibrated confidence intervals via resampling. This is due
to the fact that BFS, FF, RW, and MH do not provide a list
of node/edge samples that yield i.i.d. estimates of θ.

Experimental Evaluation

Dataset Description We perform experiments on five dif-
ferent attributed network datasets. As a preprocessing step,
we take the giant component of all networks. Table 1 shows
the summary statistics for each network after processing.

Facebook is a snapshot of the Purdue University Face-
book network consisting of users who have listed their polit-
ical views (whether or not they declare to be conservative).

Friendster-Large (Fri.-L.) and Friendster-Small (Fri.-S.)
are processed from the entire Friendster social network
crawl (Mouli et al. 2017). For Fri.-L., we take the subgraph
containing all users with age, gender, and marital status
listed in their profiles. For Fri.-S., we also include zodiac.
We discretized the age attribute into four interval classes.

The observations we make are not restricted to social
networks. We also experiment on two citation networks,
Communications (Comm.) and Computers, both constructed
from the NBER patent citations dataset (Hall, Jaffe, and Tra-
jtenberg 2001).2 The label of each patent indicates whether
it was filed in a category related to comm. (computers).

Experiment Setup In each run of the simulation, we ran-
domly select 50% nodes in the network to have observed
labels, and the task is to infer the labels of the remaining
nodes. Next, a labeled node is randomly selected as the seed

2While the edges in the citation networks are directed, we treat
them as undirected edges in the experiments for simplicity.

Table 1: Summary of Network Statistics

Dataset |V | |E| Attributes

Facebook 14,643 336,034 Political view
Fri.-L. 3,146,011 47,660,702 Age, gender, status
Fri.-S. 1,120,930 19,342,990 Age, gender, status, zodiac
Comm. 855,172 5,269,278 Communications-related
Computers 855,172 5,269,278 Cmputers-related

node to initiate crawling for all the sampling methods.3 In
practice, querying a node will be associated with a certain
cost, and we strictly control for the number of unique node-
queries. For each method, we keep track of the parameter es-
timates and bootstrap confidence intervals as crawling pro-
gresses. We perform 10 runs of the simulation, and report the
average performance and standard errors for all methods.

Evaluation Criteria We measure the performance of the
various network crawling methods in terms of:

• The quality of the RBC parameter estimates learned from
a network sample crawled using that method. Specifically,
we measure (i) the mean-absolute-error (MAE) between
the sample estimate computed from the crawled sample
and the global estimate computed from the entire graph,
and (ii) the root-mean-square-error (RMSE) of the pre-
dicted class probabilities for the unlabeled nodes4 using
an RBC model equipped with the sample estimates.

• The quality of the confidence intervals obtained from the
crawled sample, as measured by the coverage probability.

Evaluation of Estimation Performance Figure 1 shows
the quality of the estimated parameters vs. the proportion
of queried nodes in the network as crawling progresses. We
observe that across all datasets, tour sampling (TS) consis-
tently achieves smaller MAE in the estimated peer effects
as well as lower RMSE in the predicted class probabilities.
Also note that MH and RW usually outperfoms FF and BFS.

Evaluation of Calibration Performance Figure 2 shows
the estimated bootstrap sampling distributions for two model
parameters. 7 We observe that TS is the only method consis-
tently capturing the global parameters. Figure 2 also shows
examples of estimated peer effects in which the practitioner
could be misled to draw the wrong conclusion regarding the

3In practice, one could always avoid querying unlabeled nodes;
thus, we set all methods to crawl directly on the labeled subgraph.

4When predicting the class label for an unlabeled node, in addi-
tion to the attributes and class label of its neighbors, the attributes
(but not the class label) of the unlabeled node are also available.

5For the Friendster results, the parenthesized attribute denotes
the class label used for the prediction task, while all other attributes
are used as features. The solid line in the RMSE plots correspond to
the prediction error obtained using the global estimates. The plots
are jittered horizontally to prevent the error bars from overlapping.

6The dashed line in each panel marks the values of the global
parameter estimates, while the small horizontal bars on the violin
plots indicate the estimated 95% bootstrap confidence interval.

7For BFS, FF, RW, and MH, we perform bootstrapping directly
on the sampled nodes by treating each node as an i.i.d. instance.
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(a) Facebook (b) Fri.-L. (Age) (c) Fri.-S. (Gender) (d) Comm. (e) Computers

Figure 1: MAE of estimated parameters (top row) and RMSE of predicted class probabilities (bottom row).5

(a) Probability of one having a
friend of zodiac sign Taurus if
one is 28 to 31 years old.

(b) Probability of one having a
friend who is married given that
one is female.

Figure 2: Estimated peer effects in Friendster-Small.6

existence of specific peer effects if their network data were
crawled using conventional methods (BFS, FF, RW, MH).

To assess the calibration performance of each method, we
compute 95% confidence intervals for the RBC parameters
across 200 repeated trials, and calculate their empirical cov-
erage probability (i.e., the proportion of trials in which the
estimated confidence interval contains the global estimate).
Table 2 shows the results when 15% of each network have
been crawled. We observe that the coverage probability for
TS is higher than every other method across all datasets.

Table 2: Coverage probability of confidence intervals.

Dataset BFS FF MH RW TS

Facebook 0.3333 0.4647 0.3570 0.3217 0.9823

Fri.-L. (Age) 0.0455 0.1136 0.1838 0.5789 0.9424

Fri.-L. (Status) 0.1136 0.0682 0.1131 0.5747 0.9864

Fri.-S. (Gender) 0.5146 0.3325 0.4345 0.5990 0.9396

Comm. 0.3333 0.3333 0.0000 0.0000 1.0000

Computers 0.0000 0.0000 0.0000 0.0000 1.0000

Conclusion
In this work, we have conducted the first empirical study to
examine the impact of crawling on the estimation of peer ef-
fects in large-scale networks. Our experiments have shown
that naively applying models to data collected by existing
crawlers could lead to inaccurate parameter estimates and
unreliable assessments of peer effects. To address this issue,
we have developed crawl-aware relational estimation meth-
ods that produce accurate parameter estimates and well-
calibrated confidence intervals with statistical guarantees.
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