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Abstract

Research in statistical relational learning has produced a
number of methods for learning relational models from large-
scale network data. While these methods have been success-
fully applied in various domains, they have been developed
under the unrealistic assumption of full data access. In prac-
tice, however, the data are often collected by crawling the
network, due to proprietary access, limited resources, and pri-
vacy concerns. Recently, we showed that the parameter esti-
mates for relational Bayes classifiers computed from network
samples collected by existing network crawlers can be quite
inaccurate, and developed a crawl-aware estimation method
for such models (Yang, Ribeiro, and Neville, 2017). In this
work, we extend the methodology to learning relational lo-
gistic regression models via stochastic gradient descent from
partial network crawls, and show that the proposed method
yields accurate parameter estimates and confidence intervals.

1 Introduction
There has been a great deal of interest in learning statistical
models that can represent and reason about relational depen-
dencies (see e.g., Getoor and Taskar, 2007). For example,
political views are often correlated among friends in social
networks. While much work has been done in the relational
learning community to develop models and algorithms for
estimation and inference in networks, a primary assumption
underlying these works is that a full network is available
for learning. With access to the full network, one could per-
form stochastic gradient descent (SGD) in the usual manner,
and the learned parameters will asymptotically converge to
the desired parameter estimates (Robbins and Monro, 1951;
Bottou and Le Cun, 2005; Bach, 2014).

However, the network datasets used to study relational
models are typically samples of a larger network. In par-
ticular, it is often the case that researchers do not have ran-
dom access to the full network structure and that sampling
is only possible via repeated crawling from a node to its
neighbors—a procedure that tends to result in biased sam-
ples (Kurant, Markopoulou, and Thiran, 2011; Ribeiro and
Towsley, 2012). As a result, naively performing SGD using
these partial crawls may also suffer from unknown biases.
Part of this work shows that such crawled data could indeed
lead to biased parameter estimates in real-world scenarios.

Recently, we showed that estimating the parameters in a

relational Bayes classifier (RBC) (Neville, Jensen, and Gal-
lagher, 2003; Macskassy and Provost, 2007) using data from
widely used network sampling methods—such as snowball
sampling, forest-fire (Leskovec and Faloutsos, 2006), ran-
dom walks, and Metropolis-Hastings random walk (Gjoka et
al., 2010)—could lead to biased parameter estimates (Yang,
Ribeiro, and Neville, 2017). We then corrected for such es-
timation bias in the RBC by exploiting a general crawling
method introduced by Avrachenkov, Ribeiro, and Sreedha-
ran (2016) that produces unbiased estimates with statistical
guarantees.

In this work, we extend the methodology to develop a
crawl-based SGD procedure for relational logistic regres-
sion (RLR). The proposed method is guaranteed to obtain
unbiased estimates of the log-likelihood function and its gra-
dients over the full network (with finite variance), which al-
lows SGD to converge to the correct parameter values for
sufficiently small learning rates (Robbins and Monro, 1951).
Furthermore, we show how to construct confidence intervals
of the estimated parameters, which enables practitioners to
assess the statistical significance of features in the model.
Summary of Contributions
• We derive a crawl-based SGD method for learning the

RLR model from partial network crawls, and prove that
the proposed method yields unbiased estimates of the log-
likelihood function and its gradients over the full network.

• We demonstrate how to construct confidence intervals of
the estimated parameters by exploiting the independence
properties of the network samples.

• We conduct experiments on several large network
datasets, and demonstrate that the proposed methodology
achieves consistently lower error in parameter estimates
and higher coverage probabilities of confidence intervals.

2 Problem Definition
The goal of this work is to develop a stochastic estimation al-
gorithm for the relational logistic regression (RLR) model in
large social networks under an access-restricted scenario. In
particular, we are interested in accurately estimating model
parameters in order to effectively assess the importance of
relational features involving the neighbors of a node.1

1In Yang, Ribeiro, and Neville (2017), we also referred to the
parameters in a relational model as peer effects.



We assume that random access to the full network struc-
ture is not available, and that the network can only be ac-
cessed via crawling. Specifically, we assume (i) the avail-
ability of a seed node in the network, (ii) the ability to query
for the attributes of a sampled node, and (iii) the ability to
transition to neighbors of a sampled node.

Given such an access pattern, and assuming that the full
network cannot be crawled, the task is to accurately estimate
the model parameters by learning an RLR model over the
sampled network. If we refer to the estimates that a learn-
ing algorithm would obtain from the full network as global
estimates and those from the sampled network as sample es-
timates, then the ideal method should produce (i) unbiased
sample estimates (w.r.t. the global estimates), and (ii) accu-
rate assessments of the uncertainty associated with the sam-
ple estimates (e.g., confidence intervals).

3 Background and Related Work
Denote a graph byG = (V,E), where V is the set of vertices
andE ⊆ V ×V is the set of edges. For a node v ∈ V , denote
its neighbors by Nv = {u ∈ V : (u, v) ∈ E} and its degree
by dv = |Nv|. Finally, let 1{·} denote the indicator function.

Network Sampling Algorithms We note that under a
crawl-based scenario, any technique involving random
node/edge selection will be infeasible.

Snowball sampling (BFS) traverses the network via a
breadth-first search. Forest fire (FF) (Leskovec and Falout-
sos, 2006) samples (“burns”) a random fraction of a node’s
neighbors, and repeats this process recursively for each
“burned” neighbor. Random walk sampling (RW) performs
a random walk on the network by transitioning from the
current node to a randomly selected neighbor at every step.
Metropolis-Hastings random walk (MH) (Gjoka et al., 2010)
sets the transition probability from node u to v as PMH

u,v =

min(1/du, 1/dv) if v ∈ Nu and 1 −
∑
w 6=uP

MH
u,w if v = u,

which yields a uniform stationary distribution over nodes.
Random walk tour sampling (TS) (Avrachenkov, Ribeiro,

and Sreedharan, 2016) is a recently proposed method that
exploits the regenerative properties of random walks. Given
an initial seed node, the algorithm first performs a short
random walk to collect a set of seed nodes S ⊆ V , and
then proceeds to sample a sequence of random walk tours.
Specifically, the k-th random walk tour starts from a sampled
node v

(k)
1 ∈ S and transitions through a sequence of nodes

v
(k)
2 , . . . , v

(k)
ξk−1 ∈ V \S until it returns to a node v(k)ξk

∈ S. The
algorithm repeats this process to sample m such tours, de-
noted Dm(S) = {(v(k)1 , . . . , v

(k)
ξk

)}mk=1. Since the successive re-
turns to a seed node in S act as renewal epochs, the renewal
reward theorem (Brémaud, 1999) guarantees that sample
statistics computed from each tour will be independent.

Relational Learning Models Relational learning models
(see e.g., Getoor and Taskar, 2007) extend traditional super-
vised learning methods to the relational domain, in which
training examples (such as nodes in a social network) are no
longer i.i.d. (independent and identically distributed).

Relational logistic regression (RLR) (see e.g., Kazemi et
al., 2014) predicts the target class of a node using aggregated

features constructed from the class label and attributes of
its neighbors. A typical aggregation function is proportion,
which takes the proportion of neighbors that possess a par-
ticular class label or feature value. Let φv ∈ Rd be a set of
aggregated features for node v ∈ V that involve either the
attributes of v or the attributes/class label of its neighbors
Nv . Let yv ∈ {1, . . . ,H} be the class label of node v. The
RLR model employs the soft-max function to predict yv:

Pr(yv |w1, . . . ,wH ,φv) =
exp

(
wT
yv

φv
)∑H

h=1 exp(w
T
hφv)

,

where wc ∈ Rd are the weights for class c ∈ {1, . . . ,H}
that need to be estimated from the network.

Related Work In our previous work (Yang, Ribeiro, and
Neville, 2017), we showed that the class priors and condi-
tional probability distributions (CPDs) in a relational Bayes
classifier (RBC) can be unbiasedly estimated under the same
crawl-based scenario that we consider here. In this work, we
extend the methodology to the estimation of RLR models us-
ing a crawl-based SGD method. Note that RLR forms a more
expressive model family which poses a more challenging es-
timation task—in fact, the CPDs in an RBC can be implicitly
represented by features in an RLR model. Furthermore, sta-
tistical significance tests (e.g., χ2 and deviance tests) for the
parameter estimates in an RLR model have been extensively
studied (see e.g., Agresti, 2002) in the literature, which offer
tools for feature selection and model comparison.

4 Proposed Methodology
Given an unobserved network G = (V,E), the tasks are
(i) to estimate the parameters θ in a relational model by
crawling the network G from an initial set of seed nodes
S ⊆ V , and (ii) to assess the uncertainty associated with
the estimates θ̂. To this end, we outlined the following pro-
cedure for crawl-based estimation of relational models in
large-scale networks (Yang, Ribeiro, and Neville, 2017):
Crawling Crawl the network using a sampling method.
Estimation Estimate parameters from the crawled network.
Calibration Compute confidence intervals for the estimates.

For the crawling phase, we shall employ the random walk
tour sampling algorithm (see Section 3). Next, we discuss
the details of our proposed stochastic estimation and calibra-
tion methodology for relational logistic regression (RLR).

Relational Model Estimation Recall that RLR utilizes a
multinomial logistic regression model to define conditional
probability of the label of node v ∈ V given its observed at-
tributes and the attributes/class label of its neighborsNv . Let
φv ∈ Rd be a set of aggregated features for node v ∈ V that
is computed from its neighborsNv . In practice, to reduce the
node-querying cost, we can estimate the aggregated features
φv stochastically by taking a uniform sample of the neigh-
bors Nv . The log-likelihood for the RLR model is given by

L(w1, . . . ,wH) =
∑
v∈V

log Pr(yv |w1, . . . ,wH ,φv)

=
∑
v∈V

[
wT
yv

φv − log

(
H∑
h=1

exp(wT
hφv)

)]
, (1)



where wc ∈ Rd are the weights for class c ∈ {1, · · · , H}.
In general, we do not have any guarantees on the qual-

ity of the parameter estimates obtained from a crawled net-
work. However, if the sample were collected using the tour
sampling algorithm, we propose applying Theorem 1 to ac-
curately estimate the parameters in an RLR model.

Theorem 1 (RLR crawl-based SGD) Given the sampled
random walk tours Dm(S) = {(v(k)1 , . . . , v

(k)
ξk

)}mk=1, the
following estimates for the log-likelihood of Eq. (1) and its
gradients are unbiased:

L̂(w1, . . . ,wH) ,
dS
m

m∑
k=1

ξk−1∑
t=2

g(v
(k)
t )

d
v
(k)
t

+
∑
v∈S

g(v) (2)

∇wj L̂(w1, . . . ,wH) ,
dS
m

m∑
k=1

ξk−1∑
t=2

g′j(v
(k)
t )

d
v
(k)
t

+
∑
v∈S

g′j(v) , (3)

where dS = |((S × V ) ∩ E)\(S × S)| denotes the total
number of outgoing edges from the seed nodes, and

g(v) , wT
yv

φv − log

(
H∑
h=1

exp(wT
hφv)

)

g′j(v) ,

(
1{yv = j} −

exp(wT
j φv)∑H

h=1 exp(w
T
hφv)

)
φv .

Proof We defer the proof to the Appendix.

We can learn the weights of an RLR model by minimizing
the negative log-likelihood via stochastic gradient descent
using the estimates of Eq. (3). While Theorem 1 shows that
the log-likelihood over the full network and its gradients can
be unbiasedly estimated, we note that the current result does
not directly imply bounds on the approximation error of the
resulting parameter estimates. Empirically, our experiments
suggest that the parameter estimates are quite accurate.

Calibration of Estimated Parameters To construct con-
fidence intervals for the estimated parameters, we propose
to utilize bootstrap resampling (Efron, 1979). In fact, this
step can be performed as sampling progresses—by monitor-
ing the confidence intervals, the practitioner can determine
adaptively if more samples need to be collected.

For tours sampling, since the estimates computed from
each tour are independent, we can perform bootstrapping
by treating the tours individually, sample with replacement,
compute an estimate over the bootstrap sample, and repeat
this process. We can then compute empirical confidence in-
tervals over the bootstrap estimates. Algorithm 1 describes
the bootstrapping algorithm we use to compute confidence
intervals for the parameters θ in a general relational model.
For convenience, denote the nodes sampled in the k-th tour
by Tk , {v(k)t }

ξk
t=1. Among all the crawling methods under

examination, tours sampling is the only approach capable of
producing theoretically justified confidence intervals via re-
sampling. This is due to the fact that BFS, FF, RW, and MH
do not provide a list of node/edge samples that yield i.i.d.
estimates of the model parameters.

Algorithm 1: Computation of Confidence Intervals

Input: The sampled tours Dm(S) =
{
Tk
}m
k=1

; and
the number of bootstrap samples B.

Output: A 100 (1− α)% confidence interval for θ.
1 Θ← ∅
2 for i = 1, 2, · · · , B do
3 D(i)

m ← ∅
4 for j = 1, 2, · · · ,m do
5 k ← Random integer in {1, 2, · · · ,m}
6 D(i)

m ← D(i)
m ∪ {Tj}

7 θ̂i ← Estimate of θ computed using D(i)
m

8 Θ← Θ ∪ {θ̂i}
9 Qα/2 ← The 100 (α/2)-percentile of Θ

10 Q1−α/2 ← The 100 (1− α/2)-percentile of Θ
11 return (Qα/2, Q1−α/2)

5 Experimental Evaluation
Dataset Description We perform experiments on five dif-
ferent attributed network datasets. As a preprocessing step,
we take the giant component of all networks. Table 1 shows
the summary statistics for each network after processing.

Facebook is a snapshot of the Purdue University Face-
book network consisting of users who have listed their polit-
ical views (whether or not they declare to be conservative).

Friendster-Large (Fri.-L.) and Friendster-Small (Fri.-S.)
are processed from the entire Friendster social network
crawl (Mouli et al., 2017). For Fri.-L., we take the subgraph
containing all users with age, gender, and marital status
listed in their profiles. For Fri.-S., we also include zodiac.
We discretized the age attribute into four interval classes.

The observations we make are not restricted to social
networks. We also experiment on two citation networks,
Communications (Comm.) and Computers, both constructed
from the NBER patent citations dataset (Hall, Jaffe, and Tra-
jtenberg, 2001).2 The label of each patent indicates whether
it was filed in a category related to comm. (computers).

Experiment Setup In each run of the simulation, we ran-
domly select 50% nodes in the network to have observed
labels, and the task is to infer the labels of the remaining
nodes. Next, a labeled node is randomly selected as the seed
node to initiate crawling for all the sampling methods.3 In
practice, querying a node will be associated with a certain
cost, and we strictly control for the number of unique node-
queries. For each method, we keep track of the parameter es-
timates and bootstrap confidence intervals as crawling pro-
gresses. We perform 10 runs of the simulation, and report the
average performance and standard errors for all methods.

Evaluation Criteria We measure the performance of the
various network crawling methods in terms of:

2While the edges in the citation networks are directed, we treat
them as undirected edges in the experiments for simplicity.

3In practice, one could always avoid querying unlabeled nodes;
thus, we set all methods to crawl directly on the labeled subgraph.



Table 1: Summary of Network Statistics

Dataset |V | |E| Attributes Class Prior Distribution

Facebook 14,643 336,034 PoliticalView Conservative: 28.40%, Otherwise: 71.60%
Friendster-Large 3,146,011 47,660,702 Age [16, 26): 35.02%, [26, 28): 16.27%, [28, 32): 22.56%, [32: 100): 26.15%

Gender Female: 46.99%, Male: 53.01%
Status Single: 67.21%, In a Relationship: 19.06%, Married: 12.60%, Domestic Partner: 1.13%

Friendster-Small 1,120,930 19,342,990 Age [16, 26): 44.53%, [26, 28): 14.96%, [28, 32): 21.28%, [32, 100): 19.23%
Gender Female: 45.39%, Male: 54.61%
Status Single: 62.01%, In a Relationship: 20.29%, Married: 16.50%, Domestic Partner: 1.21%
Zodiac Capricorn: 7.74%, Virgo: 8.27%, Libra: 8.60%, Gemini: 8.11%,

Scorpio: 8.31%, Leo: 8.88%, Taurus: 8.79%, Sagittarius: 8.58%,
Cancer: 8.15%, Aquarius: 8.97%, Pisces: 7.83%, Aries: 7.77%

Communications 855,172 5,269,278 Comm. Yes: 6.09%, No: 93.91%
Computers 855,172 5,269,278 Computers Yes: 17.34%, No: 82.66%

• The quality of the RLR parameter estimates learned from
a network sample crawled using that method. Specifically,
we measure (i) the mean-absolute-error (MAE) between
the sample estimate computed from the crawled sample
and the global estimate computed from the entire graph,
and (ii) the root-mean-square-error (RMSE) of the pre-
dicted class probabilities for the unlabeled nodes4 using
an RLR model equipped with the sample estimates.

• The quality of the confidence intervals obtained from the
crawled sample, as measured by the coverage probability.

Evaluation of Estimation Performance Figure 1 shows
the quality of the estimated parameters vs. the proportion
of queried nodes as crawling progresses.5 We observe that
across all datasets, tour sampling (TS) consistently achieves
smaller MAE in the estimated model parameters as well as
lower RMSE in the predicted class probabilities. Also note
that MH and RW usually outperfom FF and BFS.

For numerical stability reasons, we utilized either `1 or
`2 regularization in our experiments. Since our interest is in
accurately estimating model parameters, we set the regular-
ization parameter to be very small (10−3) in both cases. Not
surprisingly, `1 regularization results in sparser parameter
estimates. Also note that the unbiased estimators we pro-
posed for TS automatically scales up the estimate of the log-
likelihood and its gradients to match that of the full-network,
whereas those obtained using conventional sampling meth-
ods would depend on the size of the crawled sample.

Comparing the learning curves for the parameter esti-
mates MAE with those of the RMSE of predicted class prob-
abilities as well as the classification accuracy, we notice that
the required sample size to achieve reasonable prediction
performance can be much smaller than the sample size re-
quired to accurately estimate model parameters. Figure 2
also shows that more accurate parameter estimates do not
necessarily translate to improved classification accuracy, as

4When predicting the class label for an unlabeled node, in addi-
tion to the attributes and class label of its neighbors, the attributes
(but not the class label) of the unlabeled node are also available.

5For the Friendster results, the parenthesized attribute denotes
the class label used for the prediction task, while all other attributes
are used as features. The solid line in the RMSE plots correspond to
the prediction error obtained using the global estimates. The plots
are jittered horizontally to prevent the error bars from overlapping.

in some cases biased parameter estimates may lead to better
generalization performance.

Evaluation of Calibration Performance Figure 3 shows
the estimated bootstrap sampling distributions for several
model parameters.6 We observe that TS is the only method
consistently capturing the global parameter values.

To assess the calibration performance of each method, we
compute 95% confidence intervals for the RLR parameters
across 200 repeated trials, and calculate their empirical cov-
erage probability (i.e., the proportion of trials in which the
estimated confidence interval contains the global estimate)
as well as average interval width. Table 2 shows the results
when 15% of each network have been crawled. We observe
that the coverage probability for TS is higher than every
other method across all datasets.7

6 Conclusion and Future Work
In this work, we developed a stochastic gradient descent
method for learning relational logistic regression models
from large-scale networks via partial crawling. We proved
that the proposed method yields unbiased estimates of the
log-likelihood and its gradients over the full graph, and
demonstrated how to construct confidence intervals of the
model parameters. Our experiments showed that the pro-
posed method produces more accurate parameter estimates
and confidence intervals compared to naively learning mod-
els from data collected by existing crawlers.

Estimation of Templated Relational Models One line of
future work would be to extend our stochastic estimation
method to the family of templated relational models, such as
relational Markov networks (RMNs) (Taskar, Abbeel, and
Koller, 2002), Markov logic networks (MLNs) (Domingos
and Richardson, 2004), and relational dependency networks

6For BFS, FF, RW, and MH, we perform bootstrapping directly
on the sampled nodes by treating each node as an i.i.d. instance.

7Notice that in some cases, even TS does not achieve the nom-
inal 95% coverage probability, possibly due to small errors in the
parameter estimates when the crawling proportion is relatively low.
Furthermore, regularization introduces an additional source of bias.
In particular, notice that the coverage probabilities of RLR-`1 are
significantly lower than that of RLR-`2 across all methods, which
is due to the shrinkage effect of the `1 penalty that results in pa-
rameter estimates with small values to be shrunk to exactly zero.
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Figure 1: MAE of estimated parameters (top row) and RMSE of predicted class probabilities (bottom row).

Table 2: Coverage probability and average width of 95% bootstrap confidence intervals on 15% crawled network.

(Coverage Probability, Average Interval Width)

Model Dataset BFS FF MH RW TS

RLR-`1 Fri.-L. (Age) (0.0842, 0.1849) (0.0801, 0.1940) (0.1887, 0.2439) (0.1615, 0.2674) (0.7142, 0.5313)
RLR-`1 Fri.-L. (Gender) (0.0714, 0.0757) (0.0741, 0.0986) (0.1278, 0.0979) (0.1019, 0.1177) (0.5239, 0.2167)
RLR-`1 Fri.-L. (Status) (0.1946, 0.2636) (0.1470, 0.2500) (0.4548, 0.3876) (0.3179, 0.3577) (0.7479, 0.7591)
RLR-`1 Fri.-S. (Gender) (0.4825, 0.2523) (0.4810, 0.2886) (0.7307, 0.3941) (0.6346, 0.4384) (0.7443, 0.8247)
RLR-`1 Comm. (0.0000, 0.1475) (0.0000, 0.1205) (0.0000, 0.1817) (0.0000, 0.1888) (0.6240, 0.4346)
RLR-`1 Computers (0.0000, 0.1008) (0.0000, 0.1034) (0.0000, 0.1268) (0.0000, 0.1206) (0.2500, 0.3595)
RLR-`2 Fri.-L. (Age) (0.1393, 0.1739) (0.1912, 0.1897) (0.3687, 0.2457) (0.3392, 0.2590) (0.8321, 0.5160)
RLR-`2 Fri.-L. (Gender) (0.1429, 0.0824) (0.1429, 0.0863) (0.3641, 0.0977) (0.3552, 0.1045) (0.9996, 0.2282)
RLR-`2 Fri.-L. (Status) (0.3090, 0.2576) (0.3055, 0.2765) (0.5339, 0.3391) (0.4078, 0.3331) (0.8707, 0.7261)
RLR-`2 Fri.-S. (Gender) (0.5508, 0.2606) (0.6001, 0.2858) (0.6722, 0.3909) (0.7502, 0.4220) (0.9568, 0.6578)
RLR-`2 Comm. (0.0000, 0.1464) (0.0000, 0.1556) (0.0000, 0.2026) (0.0000, 0.2100) (1.0000, 0.5279)
RLR-`2 Computers (0.0000, 0.1099) (0.0000, 0.1296) (0.0000, 0.1522) (0.0000, 0.1462) (1.0000, 0.3480)
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Figure 2: RLR classification accuracy.

(RDNs) (Neville and Jensen, 2007) under the same crawl-
based scenario examined in this work.

Notice that RLR can be viewed as a direct analog of
MLNs where the weighted logic formulas are used to de-
fine conditional instead of joint probabilities. More gener-
ally, when the cliques in RMNs and MLNs are defined over
connected subgraphs up to size three, we expect that the
full log-likelihood can be unbiasedly estimated by extending
our proposed methodology. However, learning RMNs and
MLNs that contain higher-order clique structures would be
more challenging.

For RDNs, the estimation procedure depends on the spe-

cific local conditional model one employs. Our previous
work (Yang, Ribeiro, and Neville, 2017) can be used to learn
RDNs when the RBC is used to model the local conditional
probability distributions (CPDs), and the current work has
addressed the case when RLR is used as the local model
component. Another possible choice for the local model
consist of relational probability trees (RPTs) (Neville et al.,
2003). Similar to RLR, RPTs also utilize aggregation func-
tions to construct node-centric features. While these aggre-
gated features can be stochastically estimated in the same
way as in RLR, learning the full tree structure becomes dif-
ficult due to the greedy partitioning procedure involved.

Impact of Sampling on Collective Inference Finally, we
note that in this work we utilize non-collective inference on
the full graph—that is, when predicting an unlabeled node,
we do not utilize the predictions made for its unlabeled
neighbors, and instead treat their class labels as missing. Al-
though collective inference has been shown to improve clas-
sification accuracy, it also introduces inference error (Xiang
and Neville, 2011). In this work, we have mainly focused
on examining the impact of crawling on learning, but future
work should investigate the more complex interplay between
sampling, learning, and inference.
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Figure 3: Examples of estimated bootstrap sampling distributions using RLR-`1 on Friendster-Large (Age).
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A Proofs of Theorems
Proof of Theorem 1. It will be convenient to define the func-
tion

f(u, v) ,

{
g(v)/dv if v ∈ V \S;
0 if v ∈ S.

(4)

Recall that our goal is to estimate

L =
∑
v∈V

g(v) =
∑

v∈V \S
g(v) +

∑
v∈S

g(v) , Lt + Ls, (5)

where Ls can be computed explicitly. Notice that8

Lt =
∑

v∈V \S
g(v) =

∑
(u,v)∈E

f(u, v). (6)

Given the random walk tours Dm(S) = {(v(k)1 , · · · , v(k)ξk
)}mk=1,

we estimate Lt using L̂t , 1
m

∑m
k=1 L̂tk, where

L̂tk , dS

ξk∑
t=2

f(v
(k)
t−1, v

(k)
t ) = dS

ξk−1∑
t=2

g(v
(k)
t )

d
v
(k)
t

. (7)

Here, dS = |((S × V ) ∩ E)\(S × S)| denotes the to-
tal number of outgoing edges from the seed nodes, and the
last equality follows from Eq. (4). Plugging the estimate into
Eq. (5), we arrive at the full estimate of L:

L̂ , L̂t + Ls =
dS
m

m∑
k=1

ξk−1∑
t=2

g(v
(k)
t )

d
v
(k)
t

+
∑
v∈S

g(v) . (8)

Moreover, the gradients of L can be estimated by

∇wj L̂(w1, . . . ,wH) =
dS
m

m∑
k=1

ξk−1∑
t=2

g′j(v
(k)
t )

d
v
(k)
t

+
∑
v∈S

g′j(v) . (9)

To show that the estimates of Eqs. (8) and (8) are unbiased,
it suffices to show that for all k, L̂tk is an unbiased estimate
ofLt, since the sample average L̂t will also be unbiased, and

8Recall that for undirected graphs, the edge-set E contains both
copies of each edge—i.e., (u, v) ∈ E if and only if (v, u) ∈ E.

the gradient is a linear operator. More formally, we prove
that for any k = 1, · · · ,m, we have

E

dS ξk∑
t=2

f(v
(k)
t−1, v

(k)
t )

 =
∑

(u,v)∈E
f(u, v). (10)

Notice that the random walk tour sampling algorithm (cf.
Section 3) is equivalent to a conventional random walk con-
ducted on a virtual multi-graph G̃ formed by treating all the
seed nodes in S as a single “super-node” while retaining all
outgoing edges. Thus, the degree of the super-node is dS .
The sampling process, viewed as a random walk on G̃, con-
stitutes a renewal process in which a renewal occurs when
the walk returns to the super-node (thereby completing a
tour). For the k-th tour (v

(k)
1 , · · · , v(k)ξk

), define its reward as

Yk ,
ξk∑
t=2

f(v
(k)
t−1, v

(k)
t )1{v(k)t−1 = u, v

(k)
t−1 = v},

where u and v are two adjacent vertices in V \S. By the
Markov property, both the tour lengths {ξk}mk=1 and the re-
wards {Yk}mk=1 are i.i.d. sequences. Let

N(i) , min{n :

n∑
k=1

ξk ≤ i}

be the number of renewals (visits to the super-node) up to
sampling the i-th node in the random walk. Then the renewal
reward theorem (Brémaud, 1999, Chapter 3, Theorem 4.2)
implies that

lim
i→∞

∑N(i)
k=1 Yk

i
=

E [Y1]

E [ξ1]
. (11)

Let Ẽ = E\(S × S) be the edge-set of G̃. The stationary
probability of a random walk on G̃ are given by πv = dv/|Ẽ|,
and the transition probability from u to v is given by Puv =
1/du. Therefore,

lim
i→∞

∑N(i)
k=1 Yk

i
= πu Puvf(u, v) =

1

|Ẽ|
f(u, v), (12)

and the mean recurrence time is E [ξ1] = 1/πS = |Ẽ|/dS .
Joining Eq. (11) and Eq. (12), and multiplying by |Ẽ| on
both sides, we have that

dS E

 ξ1∑
t=2

f(v
(1)
t−1, v

(1)
t )1{v(1)t−1 = u, v

(1)
t = v}

 = f(u, v),

Finally, taking the sum over all (u, v) ∈ E yields Eq. (7),
which concludes our proof.
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