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Abstract

Networks form useful representations of data
arising in various physical and social domains.
In this work, we consider dynamic networks
such as communication networks in which
links connecting pairs of nodes appear over
continuous time. We adopt a point process-
based approach, and study latent space models
which embed the nodes into Euclidean space.
We propose models to capture two different as-
pects of dynamic network data: (i) commu-
nication occurs at a higher rate between indi-
viduals with similar features (homophily), and
(ii) individuals tend to reciprocate communi-
cations from other nodes, but in a manner that
varies across individuals. Our framework mar-
ries ideas from point process models, includ-
ing Poisson and Hawkes processes, with ideas
from latent space models of static networks.
We evaluate our models over a range of tasks
on real-world datasets and show that a dual la-
tent space model, which accounts for hetero-
geneity in both reciprocity and homophily, sig-
nificantly improves performance for both static
and dynamic link prediction.

1 INTRODUCTION
Latent space models are a valuable tool for modeling so-
cial network data. By incorporating an embedding over
nodes (e.g., people), such models can account for un-
observed preferences, interests, attitudes, etc. Typically,
the likelihood of edges (interactions) between two nodes
depends on their distance in the embedding space: the
closer they are, the more likely they are to be linked.
This reflects the notion of homophily (McPherson et al.,
2001) that has been observed in many social domains:
similar entities are more likely to form a tie than two ran-
domly selected entities. As such, including latent spaces

in models of static social networks has often improved
descriptive and predictive accuracy with respect to mod-
eling the link structure (e.g., Hoff et al. 2002).

In this work, we focus on modeling the structure of dy-
namic networks, where interactions occur among entities
over time. Dynamic networks are more complex than
static networks because the temporal interactions can be
varied and bursty, reflecting new, repeated, or correlated
events. Much of the recent work in modeling temporal
networks has typically represented the input networks as
a sequence of snapshots taken at discrete time-points and
often used Markov assumptions to restrict temporal cor-
relations to the previous time-step.

It is much more natural to model the network dynamics
using point processes, particularly when the interactions
indicate events that occur in continuous time (e.g., each
pair of nodes has a sequence of interactions over time).
Previous work have applied various point processes such
as Poisson processes (e.g., Iwata et al. 2013), renewal
processes (e.g., Min et al. 2011), and Hawkes processes
(e.g., Blundell et al. 2012) to modeling network data.
Hawkes processes in particular have attracted a great deal
of recent interest due to their capability to capture reci-
procity in interaction data. Reciprocity refers to the act
of responding to a particular action with the same type
of action (Ekeh, 1974). For example, in social network
interactions, if one person sends another a message, the
likelihood that the other person will respond and send
a message back in the near future increases. However,
recent work has focused more on modeling reciprocity
with specific individuals (or clusters of people) rather
than modeling the dependencies among individuals that
may influence reciprocity.

In this work, we bring the strength of latent space mod-
els for static networks to point process models for dy-
namic networks. We make the key observation that the
latent dimensions of users which influence link forma-
tion may be different from the latent dimensions of users
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which influence reciprocity. We refer to the former as
the user’s homophily latent space—dimensions which in-
clude preferences, interests, attitudes, etc. We refer to the
latter as the user’s reciprocal latent space—dimensions
which include prosociality, agreeableness, level of self-
monitoring, adherence to social norms, etc. Since the set
of temporal interactions in dynamic networks consists of
various types of events (some new, some instigated by
other events), it is unlikely that all such interactions are
governed by the same process. We conjecture that differ-
ent latent space embeddings will help models to distin-
guish bursty events due to reciprocation from other types
of interactions in a conversation.

To explore these issues, we propose a set of latent space
point process models including a Poisson process-based
model and multiple Hawkes process-based models with
different latent space embeddings. We evaluate the util-
ity of the various models both quantitatively and quali-
tatively through a set of carefully designed experiments
on real-world datasets. Our results show that a dual la-
tent space Hawkes process model, which contains latent
spaces for both homophily and reciprocity, are more ac-
curate for both dynamic and static link prediction. More-
over, the embeddings themselves can be used for subjec-
tive evaluation and provide insights on how various pairs
of entities interact in the network.

Contributions. We make the following contributions:
• We propose and study a sequence of latent space

point process models, including a Poisson process
latent space model, two single-latent space Hawkes
process models and a novel dual-latent space model.

• We develop methodology to evaluate the proposed
models, including static and dynamic prediction
tasks, and exploration of the learned embeddings.

• We evaluate the utility of our models both quantita-
tively and qualitatively on three real-world datasets.
We show that incorporating both the homophily and
reciprocal latent spaces improves predictive perfor-
mance and gives rise to interpretable embeddings.

Outline. Section 2 reviews background on point pro-
cesses and statistical network models; Section 3 formu-
lates the problem and clarifies modeling assumptions;
Section 4 proposes a set of latent space models for dy-
namic networks; Section 5 empirically evaluates the pro-
posed models; Section 6 covers related work; and finally
Section 7 concludes the paper.

2 BACKGROUND

2.1 POINT PROCESS MODELS
Point pattern data, consisting of the counts and locations
of objects in some space, occur widely in the physical

and social sciences. Our focus is on events occurring
in time, so that the underlying space is the non-negative
real line R+. We write realizations of such data as
{N(t), t ≥ 0}, where N(t) is non-negative, integer, and
non-decreasing, and gives the number of events occur-
ring in the time interval [0, t). The object {N(t), t ≥ 0}
is sometimes called a counting measure, assigning to any
interval [s, t) a measure equal to the number of events in
that interval. The special structure of the real line, as well
as the causal nature of temporal dynamics have led to a
variety of models for point process data on the real line.
Two are particularly relevant to this paper:

Poisson Processes. The Poisson process is the canoni-
cal example of a point process. It is governed by a non-
negative intensity (rate) function λ(t), and has two prop-
erties: (i) for any t > s, the number of events within the
time interval [s, t), i.e., N(t) −N(s), follows a Poisson
distribution with mean

∫ t
s
λ(t) dt; and (ii) the number of

events in disjoint time intervals are independent random
variables. A Poisson process is homogeneous if its in-
tensity function is constant (λ(t) = λ), otherwise it is
referred to as non-homogeneous. If the intensity λ(t) it-
self is random, then the point process is referred to as a
Cox process (or a doubly-stochastic Poisson process).

Hawkes Processes. Hawkes processes have attracted
much attention recently by capturing deviations from the
Poisson process assumptions. Hawkes processes account
for causality in the temporal dynamics of point pattern
data by modeling self-excitation (when a single point
process is involved), and mutual excitation or reciprocity
(when collections of point processes are under study).
The former is relevant to modeling individual activities
over time (e.g., hospital visits), while the latter is use-
ful for modeling activities on communication networks
(e.g., email communications between members of an or-
ganization). In both examples, an initial event is often a
trigger for a subsequent burst of activity.

Formally, a Hawkes process is a point process with con-
ditional intensity function

λ(t|H(t)) = γ +

∫ t

0

φ(t− s) dN(s)

= γ +
∑
k: tk<t

φ(t− tk) (1)

where H(t) = {tk : tk < t} consists of the event his-
tory at time t, γ is the base-rate, and φ(·) is a trigger-
ing kernel that characterizes the excitatory effect that a
past event has on the current event rate. For example,
φ(·) might be the exponential kernel φ(t) = βe−t/τ ,
t ≥ 0, implying that an event has an excitatory boost
of magnitude β, which decays exponentially with a time
scale τ . More generally, when we have m processes



{N1(t), N2(t), · · · , Nm(t)} that mutually excite one an-
other, a multivariate Hawkes process has the conditional
intensity of the j-th process given by

λj(t|{Hi(t)}mi=1) = γj +

m∑
i=1

∫ t

0

φij(t− s) dNi(s) .

Here Hi(t) denotes the event history associated with the
i-th process Ni(t) at time t; this consists of all events up
to time t that are seen by process i.

We conclude with a technical remark. For any of these
point processes, given a set of observed events {ti}ni=1 in
an interval [0, T ), the likelihood of a conditional intensity
λ(t) is given by

L(λ(t)|{ti}ni=1) = e−Λ(0, T )
n∏
i=1

λ(ti) (2)

where Λ(0, T ) =
∫ T

0
λ(t) dt is the cumulative condi-

tional intensity function. Different point process models
make different independence assumptions about λ(t).

2.2 STATISTICAL NETWORK MODELS

Graphs or networks, are useful representations of rela-
tional data natural to various physical, social, and infor-
mational domains. Mathematically, a graph G is written
as G = (V,E) where V is the set of vertices (nodes) and
E ⊆ V × V is the set of edges (links). For example, in
a network of individuals on a social media platform like
Facebook, V represents users and E encodes undirected
friendship relations. In a corporate email network, each
node v ∈ V might represent an employee in the corpo-
ration, and each edge (u, v), an email message sent from
node u to node v. These two examples represent two
different kinds of network data: static and dynamic.

Static Network Models. These models have a rich his-
tory, with proposed models including the Erdős-Rényi
model (Erdős and Rényi, 1959), the preferential attach-
ment model (Barabasi and Albert, 1999), the small-world
model (Watts and Strogatz, 1998), the exponential ran-
dom graph model (Holland and Leinhardt, 1981), and the
stochastic blockmodel (Nowicki and Snijders, 2001), etc.

Of particular interest to us is the seminal work of Hoff
et al. (2002), which models the probability puv of a link
between two nodes u and v via a logistic regression
model that depends on the observed features of nodes
u and v, as well as the Euclidean distance ‖zu − zv‖2
between their latent features zu, zv ∈ Rd. Young and
Scheinerman (2007) proposed a similar model where the
Euclidean distance ‖zu − zv‖2 is replaced by the dot-
product zTuzv . An advantage of latent space models is
that by estimating the latent features zv for each node v,
we obtain a mapping that embeds the nodes of the graph

into a Euclidean space Rd. Such an embedding is much
more amenable to conventional statistical analysis.

Dynamic Network Models. In many real-world ap-
plications, the network structure evolves over time, and
we have access to fine-grained temporal information de-
scribing the evolution of the network structure. For in-
stance, new users join a social network like Facebook ev-
ery day; additionally, existing users may be connected by
newly forged friendships. Similarly, in a corporate email
network, the server records the precise time-stamps of
every message sent between every pair of nodes.

In contrast to the extensive literature on static networks,
statistical models for dynamic networks are much less
explored. Existing models (Sarkar and Moore, 2005;
Miller et al., 2009; Fan and Shelton, 2009; Fu and Xing,
2009; Hanneke and Xing, 2010; Snijders et al., 2010; Du-
rante and Dunson, 2014) typically assume that the avail-
able data contain a sequence of graph snapshots captured
at discrete time-points, and that the network evolution
follows Markov transition. Such approximations discard
important information when one has exact time-stamps
for each link event, and require modelers to choose a par-
ticular temporal resolution to study network dynamics. A
much more natural approach is to merge ideas from point
process modeling with network models.

3 PROBLEM DEFINITION
In this work, we develop and explore latent space models
of dynamic network data. We consider network data with
the following properties:

• There exists a fixed set of vertices V = {1, . . . , n}
throughout an observation time period [0, T ).

• For each ordered pair of vertices (u, v), we observe
a set of event-times, corresponding to a sequence of
directed links or messages from u to v. We write the
overall observed data as {(u, v,Huv)}u,v∈V , where
Huv , {tuvi }

nuv
i=1 records the set of all time-points

at which u sent v a message. We write nuv ≥ 0 for
the total number of messages from u to v.

• A node never sends a message to itself; and the
granularity of measurements is fine enough that the
probability of two simultaneous events is zero.

These properties naturally motivate a point process-
based approach, and we model the arrival times {tuvi }
of each link from node u to v as realizations of a point
processNuv(t), t ∈ [0, T ). The dynamic network evolv-
ing over time consists of n2 − n point processes Nuv(t),
which if treated as independent, involves O(n2) param-
eters. Such an independence assumption however ig-
nores important structure in the dynamics of the point
processes. We assume two sources of dependency:



Static dependencies due to homophily, where baseline
event rates vary between pairs of nodes because of shared
features. Among other things, this accounts for the fact
that the two processes Nuv(t) and Nuw(t) have a node
u in common and therefore will share statistical prop-
erties. In general, homophily reflects how similarity in
node-level properties (such as preferences, interests, and
attitudes) affects link formation.

Dynamic interactions due to reciprocity, where activity
between pairs of nodes is a function of previous history.
At its simplest, this might account for reciprocity in com-
munications between a pair of individuals. More gen-
erally, this accounts for how social influence, charisma,
and the user-role affects the dynamics in a sequence of
interactions. The nature of this reciprocation might de-
pend on shared features between two nodes different
from the features relevant to homophily.

Inspired by the work of Hoff et al. (2002), we model
these phenomena by assigning to each node v ∈ V a set
of latent features. For the first effect, we write its feature
vector as zv ∈ Rd, and assume that the intensity function
λuv(t) underlying the processNuv(t) depends on the Eu-
clidean distance between ‖zu− zv‖2. To account for the
second effect, we cannot assume that λuv(t) is fixed in
time given these latent features, and instead must allow it
to depend on previous network activity. This dependency
will again be described by latent features associated with
each node, but a different set which we write as xv ∈ Rd.

While we do not explicitly assume the availability of any
observed features for each node, they can be directly in-
corporated in our models by augmenting the x- and z-
vectors. We also do not assume any additional informa-
tion (such as message text or topic) for each link apart
from its time-stamp, but we note that such information
can be utilized by augmenting the hierarchical genera-
tive models with another level, as demonstrated in e.g.,
He et al. (2015); Tan et al. (2016).

4 LATENT SPACE POINT PROCESS
MODELS OF DYNAMIC NETWORKS

In this section we present a series of latent space point
process models for dynamic network data. We begin
with the most straightforward model that only captures
homophily, and proceed through a sequence of models
of increasing complexity.

4.1 POISSON LATENT SPACE MODEL
Perhaps the simplest latent space network point process
model treats messages from a node u to v as a time-
homogeneous Poisson process whose intensity is a func-
tion of the Euclidean distance between them in a latent
feature space. In equations:

Poisson-rate Latent Space (PLS) Model

zv ∼ N (0, σ2 Id×d) ∀v ∈ V

λuv(t) = γ e−‖zu−zv‖
2
2 ∀u 6= v

Nuv(·) ∼ PoissonProcess(λuv(·)) ∀u 6= v

Here, we have placed independent Gaussian priors on the
latent features for each node, resulting in a collection of
correlated doubly-stochastic Poisson processes. The pa-
rameter γ can be assigned a prior if we have node-level
or edge-level covariates available, but for identifiability
we tie the parameter across all pairs of nodes.

4.2 HAWKES LATENT SPACE MODELS

The remaining models augment the latent-space repre-
sentation with additional non-Poissonian dynamics that
capture reciprocity in communications across a network.

Hawkes Process Model. At its simplest, a node v is
much more likely to send node u a message if u had just
sent v a message earlier. To incorporate such reciprocity,
the intensity function λuv(t) governing the Nuv(t) pro-
cess can be modeled to depend on the events history of
the reciprocal process Nvu(t). Hawkes processes pro-
vide a simple mathematical tool to achieve this.

Specifically, for nodes u, v ∈ V, u 6= v, we model
the pair of processes Nuv(t) and Nvu(t), as a bivariate
Hawkes process, with intensity depending on the event
histories,Huv , {tuvi }

nuv
i=1 andHvu , {tvui }

nvu
i=1 :

λuv(t|Huv,Hvu) = γuv +
∑

k: tvuk <t

φuv(t− tvuk ) . (3)

We have removed the self-excitation component since we
do not consider self-loops in the network. Similar ap-
proaches have appeared in previous work (e.g., Blundell
et al. 2012), but we will comment on these in Section 6.
While it is standard to parametrize the triggering func-
tion φuv(·) as an exponential kernel with time scale τ , we
found that learning τ suffered from identifiability issues.
Instead, we model φuv(·) as a weighted combination of
basis kernels:

φuv(t) =

B∑
b=1

ξuvb φb(t) (4)

where ξuvb is the weight of the kernel φb. We consider
two possible forms for the basis kernel φb: (i) exponen-
tial kernels with length-scale τ , φb(t) = e−t/τ ; and (ii)
locally periodic kernels with period p and length-scale τ ,
φb(t) = e−t/τ sin2

(
πt
τ

)
. In our experiments, we utilize

kernels with time-scales of an hour, a day, and a week,
which are interpretable and realistic for our applications.



We summarize the Hawkes process model below:

Hawkes Process (HP) Model

λuv(t) = γ +
∑

k: tvuk <t

B∑
b=1

ξb φb(t− tvuk ) ∀u 6= v

Nuv(·) ∼ HawkesProcess(λuv(·)) ∀u 6= v

We have again tied the parameters γuv ≡ γ and ξuvb ≡ ξb
across all node-pairs to avoid identifiability issues.

Hawkes Base-Rate Latent Space Model. The most
straightforward way of modeling both homophily and
reciprocity is to add the Hawkes triggering function term
to the intensity functions of the previous PLS model:

Hawkes Base-Rate Latent Space (BLS) Model

zv ∼ N (0, σ2 Id×d) ∀v ∈ V

λuv(t) = γ e−‖zu−zv‖
2
2

+
∑

k: tvuk <t

B∑
b=1

ξb φb(t− tvuk ) ∀u 6= v

Nuv(·) ∼ HawkesProcess(λuv(·)) ∀u 6= v

Here, and with the Poisson-rate latent space model, we
shall refer to the z-space as the homophily latent space,
with the distance between zu and zv reflecting how dis-
similar u and v are, regardless of their communication
history. This distance sets a baseline rate of commu-
nication between the two nodes—i.e., the rate at which
one node initiates communication with the other. The
Hawkes component captures the fact that having initi-
ated a new communication, subsequent messages in that
thread will follow different dynamics.

Hawkes Reciprocal Latent Space Model. The pre-
vious model assumes heterogeneity only in the rate at
which different node-pairs initiate communications, and
the Hawkes dynamics are themselves assumed to be ho-
mogeneous across all pairs. Our next model modifies
Eq. (3) to reverse this assumption, associating latent fea-
tures with reciprocity rather than the base-rate:

Hawkes Reciprocal Latent Space (RLS) Model

xv ∼ N (0, σ2 Id×d) ∀v ∈ V

λuv(t) = γ +
∑

k: tvuk <t

B∑
b=1

ξb e
−‖xu−xv‖22 φb(t− tvuk )

Nuv(·) ∼ HawkesProcess(λuv(·)) ∀u 6= v

We shall refer to the x-space as the reciprocal latent
space, since it modulates the magnitude of excitation
triggered by each message between the pair of nodes.

Hawkes Dual Latent Space Model. As a final model,
we combine the ideas of homophily and reciprocal latent
spaces into a single model. Our final Hawkes process la-
tent space model accounts for heterogeneity both in how
two users initiate communications, as well as in the dy-
namics within a particular exchange. Using a mixture
of exponential and periodic kernels with various length-
scales, we can investigate whether a message sent from
node u to v is more likely to trigger an immediate re-
sponse, a response sometime over a week, or whether
communications have a periodic nature.

Hawkes Dual Latent Space (DLS) Model

zv ∼ N (0, σ2 Id×d) ∀v ∈ V
µv ∼ N (0, σ2

µ Id×d) ∀v ∈ V

ε(b)
v ∼ N (0, σ2

ε Id×d) ∀v ∈ V, b = 1, . . . , B

x(b)
v ∼ µv + ε(b)

v ∀v ∈ V, b = 1, . . . , B

λuv(t) = γ e−‖zu−zv‖
2
2

+
∑

k: tvuk <t

B∑
b=1

β e−‖x
(b)
u −x

(b)
v ‖

2
2 φb(t− tvuk )

Nuv(·) ∼ HawkesProcess(λuv(·)) ∀u 6= v

Notice that we have also placed a hierarchical prior on
the B reciprocal latent spaces to enforce consistency be-
tween the learned latent features across different kernels.

4.3 INFERENCE
For all the models we have discussed, we perform max-
imum a posteriori (MAP) inference over the unknown
parameters. Recall that we place independent standard
Gaussian priors on the latent space vectors {zv}v∈V and
{xv}v∈V . Additionally, we place Gamma priors on the
base rate γ and triggering magnitudes {ξb}Bb=1 and β. In-
ference is tractable since it follows from Eq. (2) that the
log-likelihood of all communications observed over the
entire network {(u, v, {tuvi }

nuv
i=1)}u,v∈V can be written as

logL =

n∑
u,v=1

u 6=v

{
−Λuv(0, T ) +

nuv∑
i=1

log λuv(t
uv
i )

}
(5)

where the intensities λuv(t) are specified for each model,
and the cumulative intensities can be found in closed-
form by noticing that for the basis kernel φb, we have∫ T

0

∑
k: tvuk <t

φb(t−tvuk ) dt =

nvu∑
k=1

[Φb(T − tvuk )− Φb(0)]



where Φb(t) ,
∫ t

0
φb(s) ds. In fact, the right-hand side,

as well as the quantities {
∑
k: tvuk <tuvi

φb(t
uv
i − tvuk )}nuvi=1

are data statistics that can be pre-computed and cached
for each pair of nodes u, v ∈ V and kernel φb. Further-
more, the gradients of the log-posterior function are also
available in closed form, and the optimization can be car-
ried out using L-BFGS-B (Byrd et al., 1995). Detailed
calculations are provided in the supplementary material.

We conclude this section with a brief summary of the
complexity of each proposed model. Assuming that the
number of nodes n and the dimensionality of the latent
spaces d are both much larger than the number of basis-
kernelsB, the HP model hasO(B) parameters, while the
PLS, BLS, and RLS models have O(n · d) parameters,
and the DLS model has O(n · d ·B) parameters.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed models of Sec-
tion 4, both quantitatively and qualitatively, on three real-
world datasets. For the quantitative component, we eval-
uate model performance across multiple tasks, includ-
ing predictive log-likelihood, dynamic link prediction,
and (static) link prediction using the learned embeddings.
For the qualitative component, we visualize the learned
network embeddings, and demonstrate how the recipro-
cal latent spaces in the DLS model can be used to char-
acterize different reciprocation patterns.

Dataset Description. We perform experiments on three
real-world communication networks:

ENRON This is the “core” network of the Enron
email dataset (Klimmt and Yang, 2004) consisting
of communications among 155 Enron executives.
Each node represents an employee, while each link
corresponds to an email message. We consider the
period between January 2000 and April 2002, dur-
ing which the vast majority of communications oc-
curred. The resulting dataset contains 9,646 email
messages spanning a period of 453 days.

EMAIL This dataset contains email communications
within Purdue University from July 2011 to Febru-
ary 2012. Each node in the network represents an
email address, while each link corresponds to an
email message. We cleaned up this dataset by filter-
ing out mailing-lists, and extracted the one hundred
nodes with largest total degree. The resulting net-
work consists of 34,438 email messages spanning a
period of 237 days.

FACEBOOK This dataset contains Facebook wall mes-
sages among students of Purdue University from
March 2007 to March 2008. Each node in the net-
work represents an anonymized user account, and

each link corresponds to a wall message. To focus
on the “core” part of the network, we take a subset
of the one hundred accounts with largest total de-
gree. The resulting network consists of 18,865 wall
messages posted over a period of 385 days.

Experiment Setup. For each network dataset, we sort
the messages according to their timestamps, and split
the dataset into a training set consisting of the first 70%
messages, and a test set consisting of the remaining 30%
messages. All models are trained on the training set, and
all evaluation tasks are performed on the test set.

For all Hawkes process-based models (cf. Section 4.2),
we utilize B = 4 basis kernels—three exponential ker-
nels with length-scales one hour, one day, and one week,
respectively: φ1(t) = e

− t
1/24 , φ2(t) = e−t, φ3(t) =

e−t/7; and a locally periodic kernel with both period and
length-scale set to one week: φ4(t) = e−t/7 sin2

(
πt
7

)
(all units are in days). For all latent space models, we set
the dimensionality of the latent vectors to be d = 100.1

For the BLS, RLS, and DLS models, we set σ2 = σ2
µ =

σ2
ε = 1. For MAP inference, we perform optimization

using the L-BFGS-B solver in the SciPy package with
analytical gradients derived for each model.

5.1 PREDICTIVE LOG-LIKELIHOOD
We learn the parameters of all models on the training
set, and compute their predictive log-likelihood values
on the test-set. From Table 1, we observe that the
Hawkes process-based models significantly outperform
the Poisson-rate latent space model (PLS), while the test
log-likelihood values improve as we move from the base-
rate latent space (BLS) and reciprocal latent space (RLS)
models to the dual latent space (DLS) model. The DLS
model also comfortably outperforms the Hawkes process
(HP) model on two of the three datasets. For the Enron
dataset, the simple HP model slightly outperforms the
other models: we believe this is because the dataset is rel-
atively unstructured, with pairwise reciprocity dominat-
ing most exchanges. Also notice that BLS outperforms
PLS, which indicates that going beyond homogeneous
Poisson processes to model reciprocity in the network
indeed yields better predictive performance.

5.2 DYNAMIC LINK PREDICTION
We further gauge the performance of the learned models
in a temporal link prediction task. Specifically, we ran-
domly sample 100 time-points ti during the test period,
and ask every model to predict the probability that a link

1Since the DLS model contains one homophily latent space
and four reciprocal latent spaces, one could argue that the latent
spaces in the other models should be (5 d)-dimensional. We
experimented with setting d = 500 dimensions for all the other
models, and obtained similar results to the d = 100 setting.



Table 1: Predictive log-likelihood.

Model ENRON EMAIL FACEBOOK

HP -16226.155 -2129.940 -7871.895
PLS -37803.978 -112684.130 -66742.379
BLS -21779.686 -9850.932 -12119.869
RLS -16565.449 -2113.254 -7867.870
DLS -16422.946 185.264 -6421.609

will appear between each pair of nodes in the [ti, ti + δ)
time window (we set δ to be two weeks). Note that all
models are equipped with parameters estimated from the
training set, and for Hawkes process models we also con-
dition on all the historical training and test events up to
time ti. For each time-point ti, we then compute the area
under the ROC curve (AUC) measured across all pairs of
nodes according to the predicted probabilities given by
each model.2 Finally, we report the mean and standard
deviations of the AUC scores across all 100 randomly
sampled testing time-points in Table 2.

Table 2: Dynamic link prediction AUC scores.

Model ENRON EMAIL FACEBOOK

HP 0.750 (0.070) 0.881 (0.088) 0.931 (0.095)
PLS 0.681 (0.041) 0.843 (0.087) 0.874 (0.078)
BLS 0.738 (0.065) 0.868 (0.095) 0.927 (0.096)
RLS 0.750 (0.070) 0.881 (0.088) 0.931 (0.095)
DLS 0.928 (0.018) 0.971 (0.006) 0.979 (0.008)

5.3 NETWORK EMBEDDING
As mentioned in Section 2.2, a major motivation for de-
veloping latent-space network models is that the learned
latent feature vectors for each node effectively provide
a mapping that embeds the observed network into Eu-
clidean space. To evaluate the quality of the learned em-
beddings for each latent space model, we perform link
prediction on the test set by collapsing the messages into
a single undirected and unweighted graph, where there
exists an edge between two nodes if at least one com-
munication exists between them in the test set. Given the
learned latent feature vectors {zv}v∈V (or {x(b)

v }v∈V for
reciprocal latent spaces), we compute the predicted prob-
ability that an edge exists in the test graph via puv ∝
e−‖zu−zv‖

2
2 , ∀u, v ∈ V , and then measure the link pre-

diction AUC scores for all pairs of nodes.

In addition to the latent space models proposed in this
work, we also compare with two popular approaches for
embedding static networks:

Spectral Laplacian eigenmaps are widely used in spec-
tral clustering (see e.g., von Luxburg, 2007). Given
the adjacency matrix A of the training network, we

2The predicted probability of node u sending v at least one
message during the time interval [t, t+ δ) can be computed as
1− exp{−

∫ t+δ
t

λuv(s) ds}.

compute the d eigenvectors corresponding to the
smallest eigenvalues of the symmetric normalized
Laplacian Lsym , I−D−1/2AD−1/2, where D is a
diagonal matrix of node degrees.

node2vec This is a state-of-the-art deep learning ap-
proach to learning continuous feature representa-
tions for networks (Grover and Leskovec, 2016).3

For both Laplacian eigenmaps and node2vec, we form an
adjacency matrix of the training network A by collapsing
the messages in the training set into an undirected graph
with each edge weighted by the number of communica-
tions between the corresponding pair of nodes.4 We set
d = 100 for fair comparison.

Table 3 shows the obtained AUC scores, and Figure 1
plots the corresponding ROC curves. Shown alongside
the ROC curves are two-dimensional projections (ob-
tained using PCA) of the 100-dimensional latent spaces
learned using each method. We observe that DLS per-
forms on par with node2vec, and outperforms all other
approaches in terms of AUC score.5

Table 3: Static link prediction AUC scores.

Model ENRON EMAIL FACEBOOK

PLS 0.512 0.483 0.505
BLS 0.512 0.483 0.505
RLS 0.601 0.295 0.445
DLS 0.906 0.958 0.947

Spectral 0.687 0.428 0.452
node2vec 0.829 0.958 0.956

Homophily and Reciprocal Latent Spaces. For the
DLS model, we found that the learned homophily la-
tent spaces {zv}v∈V always perform much better than
the reciprocal latent spaces {{x(b)

v }v∈V }Bb=1 under the
static link prediction setup, as shown in the ROC curves
for DLS-z and DLS-x(1) in Figure 1.6 Moreover, sim-
ply augmenting the homophily latent space with the re-
ciprocal latent spaces actually leads to degraded perfor-
mance in link prediction AUC. However, notice that the
BLS model actually corresponds to a DLS model where

3We utilize the publicly available implementation at http:
//snap.stanford.edu/node2vec/ .

4For both Laplacian eigenmaps and node2vec, we have also
experimented with treating the adjacency matrix A as binary
(unweighted), but both methods exhibit degraded performance.

4For the DLS model, the homophily latent space is used.
5Notice that the current experiment setup does not yield

standard errors for the AUC scores, since there is only a single
training/test set split. To investigate the statistical significance
of the results, we conducted a further experiment which showed
that while DLS significantly outperforms node2vec on ENRON,
their performance are comparable on EMAIL and FACEBOOK.
See the supplementary material for details.

6The other reciprocal latent spaces exhibit similar perfor-
mance, and we omit them from the plots to reduce clutter.

http://snap.stanford.edu/node2vec/
http://snap.stanford.edu/node2vec/


(a) Embedding (ENRON) (b) Embedding (EMAIL) (c) Embedding (FACEBOOK)

Figure 1: Link prediction ROC curves (top row) and visualization of the learned embeddings (bottom row).

we have removed the reciprocal latent spaces, and the
BLS results show that in that case the learned homophily
latent space performs quite poorly in link prediction as
well. This indicates that the reciprocal latent spaces
may have a denoising effect—i.e., that it “explains away”
communications primarily due to reciprocity such that
the remaining communications arising from intensities
with low reciprocal component has to be due to the fact
that the pair of nodes are inherently similar in some way,
which is modeled by the homophily latent features.

We further visualize the estimated homophily and recip-
rocal latent spaces of the DLS model by computing the
pair-wise similarities e−‖zu−zv‖

2
2 for every pair of nodes

u, v ∈ V , and then plotting a heat-map of the inferred
similarity matrices. For the ENRON dataset, Figure 2
shows the heat-maps (colors on log-scale) for both the
homophily latent space and the reciprocal latent space
corresponding to an hourly exponential kernel (φ1).7 For
each similarity matrix, we performed hierarchical clus-
tering on the rows to obtain a node-ordering and ac-
cordingly permuted the rows and columns of the matrix
simultaneously. Notice that the similarity matrices ex-
hibit distinct clustering block-structures, indicating that
the user-interaction patterns are quite different across the
homophily and reciprocal latent spaces.

5.4 EXPLORING RECIPROCATION PATTERNS
While the reciprocal latent spaces in the DLS model may
not be directly useful in static link prediction, they do

7The complete set of heat-maps for the remaining reciprocal
latent spaces as well as those for EMAIL and FACEBOOK are
provided in the supplementary material.

(a) e−‖zu−zv‖22 (b) e−‖x
(1)
u −x

(1)
v ‖22

Figure 2: Inferred node-similarity matrices in ENRON.

offer a unique tool for examining the varying reciproca-
tion patterns exhibited across different triggering kernels.
Specifically, for each pair of nodes u and v, we can com-
pute their relative similarities in the b-th kernel via

p(b)
uv ,

e−‖x
(b)
u −x

(b)
v ‖

2
2∑B

h=1 e
−‖x(h)

u −x(h)
v ‖22

, b = 1, . . . , B.

This allows us to embed each pair of nodes onto a prob-
ability simplex where each pair u, v ∈ V is represented
by a point (p

(1)
uv , . . . , p

(B)
uv )T. Note that this simplicial

embedding is of a different nature than the latent spaces
themselves—if two points are nearby on this simplex, it
indicates that the two pairs of nodes exhibit similar rela-
tive behavior across the chosen kernels, regardless of the
absolute intensities of their communications.

In Figure 3, we selected two nodes in the ENRON net-
work, and for each node v we plot the simplicial embed-
dings of each pair (v, u), ∀u ∈ V .8 Figure 3 also plots

8For visualization, we have collapsed the kernels φ3 and φ4



node v’s total outgoing intensity λv(t) ,
∑
w∈V λvw(t)

as well as histograms showing the distribution of the Eu-
clidean distances between v and the remaining nodes in
the network. We observe that the two employees exhibit
different reciprocation patterns with other employees in
the corporation in terms of their active triggering kernels.
For instance, the employee shown on the left appears to
reciprocate with other employees in much of a similar
manner since the points are more tightly concentrated,
while the one on the right exhibits much more variabil-
ity. Also notice that different reciprocating kernels may
be active at different time-points, motivating the need for
a mixture of kernel functions in modeling reciprocity.

Figure 3: Visualizing reciprocation patterns in ENRON.

6 RELATED WORK

Point Processes. Recent work on point process models
of structured temporal data include Simma and Jordan
(2010); Perry and Wolfe (2013); DuBois et al. (2013);
Guo et al. (2015); He et al. (2015); Farajtabar et al.
(2015); Du et al. (2016); Tan et al. (2016). In Blundell
et al. (2012), Hawkes processes were combined with the
infinite relational model (Kemp et al., 2006) to perform
nonparametric clustering of nodes. This forms a simplifi-
cation to our models, with each node having a latent clus-
ter index rather than a latent embedding. In this model,
messages are observed by all nodes in a cluster rather
than individual nodes, so that reciprocity operates at the
cluster level. Blundell et al. (2012) also do not model het-
erogeneity in the reciprocating dynamics among users.

In Linderman and Adams (2014), the authors develop
a framework that combines random graph priors on the
latent network structure with a reciprocating point pro-
cess observation model. This is roughly equivalent to
our RLS model, which we use as a proxy for comparison
to Linderman and Adams (2014). However, our focus is
not on learning a latent network structure as much as on

onto the same axis since they both have length-scale one week.

teasing apart complementary parts of an observed point
process. Similar to Figure 2, our latent embeddings can
be summarized with an associated graph; in this sense the
DLS model can be thought to learn two complementary
graph structures underlying events on a network.

Graph Embedding. Recent work in the graph mining
community on learning feature representations for nodes
in static networks include Perozzi et al. (2014); Tang
et al. (2015); Grover and Leskovec (2016). The state-
of-the-art approach is node2vec (Grover and Leskovec,
2016), which extends the skip-gram neural network ar-
chitecture (Mikolov et al., 2013). Our experiments
showed that by modeling both homophily and reciprocity
in temporal interactions, the DLS model performs com-
parably or superior to node2vec in static link prediction.

7 CONCLUDING REMARKS

We have proposed latent space models for dynamic net-
work data that embed the network nodes into Euclidean
space. Our approach models heterogeneity across two
important characteristics of such data—homophily and
reciprocity—and connects latent space models of static
networks to point process models including Poisson and
Hawkes processes. The performance of our proposed
dual latent space model shows that it is crucial to ac-
count for both characteristics to accurately model dy-
namic networks. In dynamic link prediction, we find that
while the reciprocal latent space is important for accurate
predictions, the inclusion of the homophily latent space
produces a significant gain across all three real-world
datasets. In static link prediction, while the reciprocal
latent spaces are not directly useful for prediction, they
greatly improve the quality of the estimated homophily
latent space, by providing a denoising effect that filters
out communications driven primarily by reciprocity.

Our findings shed further light on recent observations in
Rudolph et al. (2016), who argue that modeling each ob-
servation conditioned on a set of other observations im-
proves the quality of the learned embeddings. They re-
fer to the conditioning set as context (e.g. in natural lan-
guage the context of a word is its surrounding words).
Similarly, one might argue the context of a node in a net-
work is its neighbors. Including reciprocal latent spaces
in the model implicitly conditions on the set of recipro-
cating neighbors, and including homophily latent spaces
implicitly conditions on the set of similar neighbors.
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A SUPPLEMENTARY MATERIAL

A.1 MAP ESTIMATION DETAILS

As described in Section 4.3, we perform maximum a posteriori (MAP) inference to estimate the parameters in all the
discussed models. In this section, we present the MAP estimation details for the HP and DLS models by deriving the
closed form expressions of the log-posterior function and its gradients; the optimization can then be carried out using
L-BFGS-B (Byrd et al., 1995). The derivations for the PLS, BLS, RLS models follow analogously, since they can all
be viewed as degenerate cases of the DLS model.

Before presenting the MAP estimation details, recall that the observed data {(u, v,Huv)}u,v∈V are collected over a
time period [0, T ), whereHuv , {tuvi }

nuv
i=1 records the set of all time-points at which u sent v a message.

A.1.1 Hawkes Process (HP) Model

Recall the Hawkes Process (HP) model:

λuv(t) = γ +
∑

k: tvuk <t

B∑
b=1

ξb φb(t− tvuk ) ∀u 6= v

Nuv(·) ∼ HawkesProcess(λuv(·)) ∀u 6= v

Notice that

Λuv(0, T ) =

∫ T

0

λuv(t) dt = γ T +

B∑
b=1

ξb

nvu∑
k=1

[Φb(T − tvuk )− Φb(0)]

where Φb(t) ,
∫ t

0
φb(s) ds.

Placing Gamma(1, 1) priors on γ and each ξb, and denoting ξ , {ξb}Bb=1, the joint density can be written as

p({Huv}nu,v=1, γ, ξ) ∝
n∏

u,v=1

u6=v

{
e−Λuv(0,T )

nuv∏
k=1

λuv(t
uv
i ) · e−γ ·

B∏
b=1

e−ξb

}

and the log-posterior function is given by

log p(γ, ξ | {Huv}nu,v=1) =

n∑
u,v=1

u6=v

{
−Λuv(0, T ) +

nuv∑
i=1

log λuv(t
uv
i )

}
− γ −

B∑
b=1

ξb

=

n∑
u,v=1

u6=v

{
−γ T −

B∑
b=1

ξb ∆vu
b,T +

nuv∑
i=1

log

(
γ +

B∑
b=1

ξb δ
uv
b,i

)}
− γ −

B∑
b=1

ξb

where 〈·, ·〉 denotes the Euclidean inner-product, and we have adopted the shorthand notations

∆vu
b,T ,

nvu∑
k=1

[Φb(T − tvuk )− Φb(0)]

δuvb,i ,
∑

k: tvuk <tuvi

φb(t
uv
i − tvuk )

to denote data statistics that can be pre-computed and cached for each pair of nodes u, v ∈ V and kernel φb.



The gradients of the log-posterior are given by

∂ log p

∂γ
=− (n2 − n)T +

n∑
u,v=1

u 6=v

nuv∑
i=1

(
γ +

B∑
b=1

ξb δ
uv
b,i

)−1

− 1

∂ log p

∂ξb
=

n∑
u,v=1

u 6=v

−∆vu
b,T +

nuv∑
i=1

δuvb,i

(
γ +

B∑
b=1

ξb δ
uv
b,i

)−1
− 1 .

A.1.2 Hawkes Dual Latent Space (DLS) Model

Recall the Hawkes Dual Latent Space (DLS) model:

zv ∼ N (0, σ2 Id×d) ∀v ∈ V
µv ∼ N (0, σ2

µ Id×d) ∀v ∈ V

ε(b)
v ∼ N (0, σ2

ε Id×d) ∀v ∈ V, b = 1, . . . , B

x(b)
v ∼ µv + ε(b)

v ∀v ∈ V, b = 1, . . . , B

λuv(t) = γ e−‖zu−zv‖
2
2 +

∑
k: tvuk <t

B∑
b=1

β e−‖x
(b)
u −x

(b)
v ‖

2
2 φb(t− tvuk )

Nuv(·) ∼ HawkesProcess(λuv(·)) ∀u 6= v

Placing Gamma(1, 1) priors on γ and β, setting σ2 = σ2
µ = σ2

ε = 1, and integrating out {µv}nv=1, the log-density
function can be written as

log p(γ, β, {zv}nv=1, {{x(b)
v }Bb=1}nv=1 | {Huv}nu,v=1)

=

n∑
u,v=1

u 6=v

{
−γ e−‖zu−zv‖

2
2 T − β

B∑
b=1

∆vu
b,T e

−‖x(b)
u −x

(b)
v ‖

2
2 +

nuv∑
i=1

log

(
γ e−‖zu−zv‖

2
2 + β

B∑
b=1

δuvb,i e
−‖x(b)

u −x
(b)
v ‖

2
2

)}

− 1

2

n∑
v=1

B∑
b=1

‖x(b)
v ‖22 +

B2

2 (B + 1)

n∑
v=1

‖x̄v‖22 −
1

2

n∑
v=1

‖zv‖22 − γ − β

where x̄v , 1
B

∑B
b=1 x

(b)
v denotes the mean latent position of node v across all basis-kernels.

The gradients of the log-posterior are given by

∂ log p

∂γ
=

n∑
u,v=1

u6=v

[
−T e−‖zu−zv‖

2
2 +

nuv∑
i=1

e−‖zu−zv‖
2
2 h−1(u, v, i)

]
− 1

∂ log p

∂β
=

n∑
u,v=1

u6=v

B∑
b=1

r(u, v, b) e−‖x
(b)
u −x

(b)
v ‖

2
2 − 1

∇zv log p =

n∑
u=1

u 6=v

{
γ

[
−2T +

nuv∑
i=1

(
h−1(u, v, i) + h−1(v, u, i)

)]
e−‖zu−zv‖

2
2 · 2 (zu − zv)

}
− zv

∇
x
(b)
v

log p =

n∑
u=1

u 6=v

{
β [r(u, v, b) + r(v, u, b)] e−‖x

(b)
u −x

(b)
v ‖

2
2 · 2 (x(b)

v − x(b)
u )
}
− x(b)

v +
B

B + 1
· x̄v



where

h(u, v, i) , γ e−‖zu−zv‖
2
2 + β

B∑
b=1

δuvb,i e
−‖x(b)

u −x
(b)
v ‖

2
2

r(u, v, b) , −∆vu
b,T +

nuv∑
i=1

δuvb,i h
−1(u, v, i) .

A.2 ADDITIONAL EXPERIMENT RESULTS

A.2.1 Further Experiment on Static Link Prediction

In Section 5.3, we noted that the experiment setup for the static link prediction task did not yield standard errors for the
AUC scores reported in Table 3, since there was only one training/test split. To investigate the statistical significance
of the results, we conducted a follow-up experiment.

For each dataset, we computed confidence intervals by performing six trials on subsets of the data. Specifically, in the
i-th trial, we let the training set to contain all events during the period between the

⌈
i−1
10

⌉
-th and the

⌊
i+2
10

⌋
-th event,

and the test set to contain all events during the period between the
⌈
i+2
10

⌉
-th and

⌊
i+4
10

⌋
-th event. In this way, each trial

used 30% training data and 20% test data, with the training and test data being non-overlapping.9 As in Section 5.3, we
fitted the model on the training set, and performed link prediction on the test set. The results are shown in Table 4.10

Table 4: Static link prediction AUC scores and standard deviations.

Model ENRON EMAIL FACEBOOK

PLS 0.510 (0.009) 0.496 (0.015) 0.491 (0.013)
BLS 0.510 (0.009) 0.496 (0.015) 0.491 (0.013)
RLS 0.439 (0.073) 0.386 (0.081) 0.456 (0.055)
DLS 0.864 (0.016) 0.934 (0.016) 0.892 (0.040)

Spectral 0.516 (0.020) 0.526 (0.032) 0.492 (0.021)
node2vec 0.749 (0.050) 0.953 (0.007) 0.935 (0.033)

By conducting two-sided t-tests at the 95% confidence level, we conclude that while DLS significantly outperforms
node2vec on ENRON, their performance differences on EMAIL and FACEBOOK are not significant.

A.2.2 Visualization of the Inferred Node-Similarity Matrices

We visualize the estimated homophily and reciprocal latent spaces of the DLS model by computing the pair-wise
similarities e−‖zu−zv‖

2
2 for every pair of nodes u, v ∈ V , and then plotting a heat-map of the inferred similarity

matrices. Figures 4, 5, and 6 show the heat-maps (colors on log-scale) for both the homophily latent space and the
reciprocal latent spaces corresponding to the hourly (φ1), daily (φ2), weekly (φ3) exponential kernels and the weekly
locally periodic kernel (φ4) on all three datasets. For each similarity matrix, we performed hierarchical clustering
on the rows to obtain a node-ordering and accordingly permuted the rows and columns of the matrix simultaneously.
Notice that the similarity matrices exhibit different clustering block-structures, indicating that the user-interaction
patterns are quite different across the homophily and reciprocal latent spaces with different kernels and time-scales.

9Notice, however, that the training/test data across different trials may share common observations. Thus, strictly speaking, the
trials are not independent, and the computed standard error estimates might under-estimate the ”true” associated uncertainty.

10Note that the overall performance for all methods are slightly degraded since we are only using subsets of the data.
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Figure 4: Inferred node-similarity matrices in ENRON.
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Figure 5: Inferred node-similarity matrices in EMAIL.
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Figure 6: Inferred node-similarity matrices in FACEBOOK.
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